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Abstract

The formalism of Faddeev equations is a consistent momentum space framework that al-
lows performing rigorous calculations for three-nucleon scattering. Here I use it to predict,
at energies up to 200 MeV, various observables employing two models of nucleon-nucleon
interaction: the OPE-Gaussian potential and the chiral interactions with semilocal reg-
ularization in momentum space up to the N*LO* chiral order. These models contain a
number of free parameters whose values are typically fixed using the two-nucleon data.
In addition to the central values of parameters also their covariance matrix has been
determined. The knowledge of the covariance matrix of the potential parameters opens
new possibilities in studies of few-nucleon systems.

In this thesis, I use such a covariance matrix to estimate uncertainties of 3N observ-
ables arising from the propagation of the uncertainties of the potential parameters. The
magnitudes of such statistical uncertainties for the two models of interaction are found
to be rather similar. In the case of the chiral potentials, we also show truncation errors
estimated in two ways: via the EKM prescription or via the Bayesian approach. The
statistical uncertainties occur to be usually much smaller than the truncation errors.

Another example of using the covariance matrix of potential parameters is investiga-
tion of correlations among various two- and three-nucleon observables as well as between
observables and specific potential parameters. In the second part of my thesis, I present
a systematic analysis of such correlations, basing on the relatively big sample of pre-
dictions. I found that most observables are uncorrelated one with the other, but there
are exceptions showing up strong correlations. That piece of information may be use-
ful in precise procedure to fix potential parameters and in finding the dependences and
correlations between potential parameters and observables.



Streszczenie

Formalizm réwnan Faddeeva umozliwia wykonywanie rygorystycznych obliczen dla pro-
cesOw rozpraszania trzech nukleonéw. W prezentowanej pracy uzywamy go, w przestrzeni
pedowej, do przewidywania przy energiach do 200 MeV wartosci obserwabli, wykorzys-
tujac dwa modele oddziatywania nukleon-nukleon: potencjal OPE-Gaussian i oddziaty-
wanie chiralne z poélokalng regularyzacja w przestrzeni pedowej do rzedu N*LO*. Mod-
ele te zawierajg szereg swobodnych parametrow, ktorych wartosci sg zwykle ustalane
na podstawie danych z sektora dwoch nukleonéw. Oprocz wartosci oczekiwanych tych
parametrow wyznaczono takze ich macierz kowariancji. Znajomo$¢é macierzy kowari-
ancji parametrow potencjatlu otwiera nowe mozliwosci w badaniach uktadéow kilkunuk-
leonowych.

W niniejszej pracy wykorzystuje taka macierz kowariancji do oszacowania niepewnosci
obserwabli w reakcji rozpraszania neutronu na deuteronie wynikajacych z propagacji
niepewnosci parametréw potencjatu. Jak wykazuje, wielkosci takich niepewnodci statysty-
cznych dla obu uzytych modeli sit jadrowych sa zblizone. W przypadku potencjatow
chiralnych pokazuje réwniez oszacowane bledy obciecia. Okazuje sie, ze niepewnosci
statystyczne sa zwykle znacznie mniejsze niz btedy obciecia, ktore obliczam na dwa
sposoby: poprzez metode EKM lub uzywajac podejécia analizy bayesowskiej.

Innym przyktadem wykorzystania macierzy kowariancji parametréw potencjatu jest
badanie korelacji miedzy réznymi obserwablami dwu- i trojnukleonowymi, a takze miedzy
obserwablami a okreslonymi parametrami potencjatu. W drugiej czesci mojej pracy dok-
torskiej przedstawiam systematyczna analize takich korelacji w oparciu o stosunkowo
duza probe losows. Odkrylem, ze wickszo$¢ obserwabli jest nieskorelowana wzajemnie,
ale istniejg wyjatki pokazujace silne korelacje. Ta informacja moze by¢ przydatna w pre-
cyzyjnym wykonaniu procedury dopasowania parametroéw potenciatu oraz w znalezieniu
zaleznosci i korelacji pomiedzy parametrami potencjalu a obserwablami.
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Overview

One of the main goals of theoretical low-energy nuclear physics is to establish the struc-
ture of the nuclear Hamiltonian. Up to now, a large set of experimental data has been
accumulated, both from bound states and reactions, including elastic and inelastic nu-
cleons scattering on nuclei over a wide range of energies. This is especially true for the
elastic nucleon-deuteron (Nd) scattering and the nucleon-induced deuteron breakup pro-
cesses. During many years of theoretical investigations of three-nucleon (3N) systems
conducted among others, by the Krakéw-Bochum group, it was demonstrated that using
nucleon-nucleon (NN) force is not sufficient to provide an accurate description of such
systems. An additional 3N force (3NF) is required to obtain a precise description of
the 3N data [1]. Nowadays, unfortunately, the details of the 3N force are still poorly
known and many efforts are undertaken to establish its properties. One example are
calculations performed by the Krakéw-Bochum group that enabled experimentalists to
prepare measurements sensitive to specific features of the nuclear Hamiltonians: the role
of particular NN force components, charge independence breaking, and the structure of
the 3NF. Major important results obtained before the mid-1990s for the 3N system were
summarized in a review paper [2], which is an important reference for a reader interested
in 3N calculations.

In order to obtain reliable and accurate information from comparing 3N data with
rigorous theoretical calculations it is necessary to estimate the uncertainties of theoretical
predictions, in addition to the uncertainties of 3N data. Such estimation should start
already when working with two-nucleon forces only. This would allow to estimate a
contribution of 3NF in the description of various phenomena of nuclear physics. Of
course, such estimations should be confirmed by calculations which explicitly take into
account NN interactions combined with 3NFs.

In the past, for various reasons, the uncertainty budget for theoretical predictions in
nuclear physics was not available or the estimated uncertainties did not offer a statistical
interpretation. With the increasing accuracy of experimental data in all areas of physics,
including the three-nucleon sector, see, e.g., Refs. [3 4, 5] [6] [7], the question of the uncer-
tainty of theoretical predictions has became very relevant in the last decade. For instance,
the problem of uncertainty quantification of theoretical calculations was emphasized in
an editorial in Physical Review A [§] journal which covers atomic, molecular, and optical
physics. This guideline was also taken by the nuclear physics community. In order to
facilitate intensive discussions, among others, the ISNET workshops (Information and
Statistics in Nuclear Experiment and Theory) are organized to better understand issues
related to the application of applied mathematics, information theory, and statistics in
the analysis of experiments, and possibilities of calculating the uncertainties of corre-
sponding theoretical calculations. The first workshop resulted in a special issue of the
Journal of Physics G: Nuclear and Particle Physics (2015). This has been continued by
the next special issue published in 2020. In my studies I would like to contribute to these



efforts and an important part of my thesis is devoted to studying selected theoretical
uncertainties.

For the specific case of elastic Nd scattering, the ab initio theoretical studies of 3N
observables are possible using any modern model of nuclear forces. NN force models used
in such investigations contain a number of free parameters whose values are fixed from
two-nucleon (2N) data. For my studies, the most important examples of such models are
the new generation of the chiral interaction currently derived even beyond to the fifth-
order (N1LO) of the chiral expansion using the semilocal regularization in momentum
space (SMS) by the Bochum-Bonn group [9] and the semi-phenomenological One-Pion-
Exchange-Gaussian (OPE-Gaussian) potential, proposed by the Granada group [10]. This
choice is dictated by the availability of the covariance matrix for the free parameters of
these forces. The knowledge of the covariance matrix of the potential parameters opens
new opportunities in studies of few-nucleon systems. One of them, realized in this thesis,
is to determine the magnitude of the uncertainty (the so-called theoretical statistical
error) of the investigated observables that arises from the propagation of uncertainty of
NN potential parameters. Part of the results presented in the thesis have been shown
in [11L 12]. Another possibility is to investigate correlations among various 2N and
3N observables as well as between observables and specific potential parameters. The
information about correlations among such observables is particularly interesting in the
context of determining free strength parameters present in the 3N interaction. The values
of these parameters are traditionally obtained by fixing from 3N data. However, using
correlated 3N observables in such an analysis may lead to an inaccurate determination of
the sought parameters. In this thesis I determine the correlations among 3N observables
in a statistically consistent way, based on a relatively big sample of predictions.

Summarizing, the main goal of this doctoral dissertation is the theoretical study
of 3N observables for elastic and inelastic Nd scattering by using the newest semilocal
momentum-space regularized chiral force. The first part of this work deals with various
types of theoretical uncertainties of the 3N scattering observables. The statistical un-
certainties obtained with the OPE-Gaussian potential and the chiral SMS interaction at
different orders of the chiral expansion are the central part of my work. In addition, for
the Nd elastic scattering, the statistical uncertainties are compared with the truncation
errors arising from the restriction to a specific order of the chiral expansion, which can
be done in two ways using a prescription suggested in [13], [14] or within the Bayesian
method [15], and with the cutoff dependence of chiral predictions. The second part of
my thesis is devoted to collecting information about the correlations among all 2N and
3N elastic scattering observables. Knowing if some observables are or are not correlated,
can have a significant impact on future methods of fixing free parameters of the two- and
many-body potentials. Especially the case of correlations in a 3N system should deliver
information on possible restrictions on data sets used during fitting the 3NF parameters.
In the case of correlations between potential parameters and 2N observables, the problem
at hand is existence of observables that show strong sensitivity to a given part of the po-
tential. If this is the case such an observable could be possibly used to fix this particular
parameter. This, in turn, will reduce the number of remaining free parameters, which
would simplify the rest of the fitting procedure.

In the next Chapter I give a more elaborate introduction to my studies while in
Chapter [2] I describe the two-nucleon force models which are used in my investigations.
In Chapter [3|I discuss various types of theoretical uncertainties and the usefulness of the
covariance matrix of two-nucleon potential parameters. In Chapter [4 I show the essential



elements of our methods in computing the deuteron binding energy, the 2N scattering
observable, and the framework of the 3N Faddeev equations in computing 3N scattering
observables used in my research. Chapter [f] is devoted to results for elastic scattering
and breakup reactions. In Chapter [6] I show results on correlations among various two-
and three-nucleon observables. Finally, I summarize in Chapter [/} This thesis contains
four appendices. The first one describes how to sample 50 sets sets of the chiral potential
parameters at different orders in the chiral expansion. Appendix B is devoted to the
dependence of truncation errors obtained within the Bayesian approach on the order of
chiral NN potential. In Appendix C, I provide a table of the central values of LECs of
the NN interactions for the N2LO, N3LO, N*LO and N*LO" chiral orders for the cutoff
value of A = 450 MeV.



Chapter 1

Introduction

Modern physics tells that four fundamental forces describe the entire observable Universe.
They are gravitational, electromagnetic, strong and weak interactions. Three of them are
combined to the Standard Model, except the gravitational one. A scale comparable to a
size of no more than the size of atomic nuclei is a field studied within the nuclear physics
in close connection with the particle physics.

Nuclear physics studies the properties and structure of atomic nuclei and their re-
actions. Some of its main tasks are related to the analysis of the nature of nuclear
forces acting between nucleons (protons and neutrons) that form nuclei and to identify
and explain the properties of their motion. Understanding nuclear forces is fundamen-
tal for both theoretical and experimental nuclear physics as well as for applied nuclear
physics. Currently, it is known that nuclear interaction between nucleons is a residual
interaction of the strong interaction between even finer elements of matter — quarks
and gluons and which is described by the Quantum Chromodynamics (QCD). As is well
known, nowadays we are not able to solve QCD in the non-perturbative region (at the
low-energy scale) and thus to describe processes at nuclear scale starting from quarks
and gluons and their interactions. For the first ongoing attempts in lattice QCD, see e.g.
Refs. [16],[17]. For example, the obtained deuteron binding energy is still much larger than
the experimental value [I8] 19]. Another advanced approaches, like the Lattice Effective
Field Theory [20], also fail to deliver results of quality comparable with the standard
nuclear physics techniques. By the latter ones we understand approaches based on the
effective nuclear interactions defined as interactions among nucleons and relying mainly
on meson exchange processes.

As a result, effective and phenomenological models of nuclear interactions are still
of great importance in low-energy nuclear physics E] and various ab initio techniques to
obtain predictions have been derived. Calculations within the ab initio or microscopic
techniques mean that the nuclear A-few body problem can be formulated in terms of
the nonrelativistic Schrodinger equation using various NN local or non-local interactions
with or without the inclusion of many-body forces. Independently on the problem in
hand: the bound state of nucleons, nuclear reactions, production or decay processes, the
starting point of research is a construction of the complete Hamiltonian of the system of
interacting particles. This thesis is devoted to purely nucleonic processes, in particular
to three-nucleon processes: the elastic and inelastic neutron-deuteron scattering.

'In my doctoral research, done as part of the investigations within the Krakow’s group, low-energy
nuclear physics is understood as nuclear physics at energies below the pion production threshold.



The general form of the nuclear Hamiltonian for the system A of nucleons is

A 9 A A
. b; 2N 3N AN
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where the first term is the non-relativistic kinetic energy, m; and p; are the i-th nucleon
mass and momentum, respectively, and V3N, VAT and VAN represent the two-, three
and A-nucleon potentials, respectively. The definition is used e.g. for a bound
state ‘\Ilfound> in the time-independent Schrodinger equation formulated as an eigenvalue
problem

H |qj€0und> = E |\Ijﬁound ) (12)

where F is the binding energy.

There are a few mathematical algorithms and ab initio approaches with well-controlled
approximations for solving a A-nucleon Schrédinger equation for light nuclei. In general,
this equation can be considered in coordinate or momentum space. Some examples of
ab initio methods for study few-nucleon systems with A > 4 were listed and reported in
an overview [2I]. For example, one of these methods is approach basing on the Faddeev-
Yakubovsky equation, which was used to calculate the binding energy and the wave
function of “He [22]. T would like also to mention methods which are quite precise in
describing the properties of light and medium mass nuclei up to A = 12, i.e. methods
based on Monte Carlo algorithms, such as the Monte Carlo variational (VMC) or the
Monte Carlo with Green’s function (GFMC) methods, see Ref. [23]. It is also worth
mentioning that there are approaches associated with the shell model of nuclei, as the
no-core shell model (NCSM) [24], the No-Core Configuration Interaction (NCCI) [25]
model, or the realistic shell model (RSM) [26]. In the last decade, many efforts have
been made to use the Similarity Renormalization Group (SRG) approach with a combi-
nation of the chiral interaction, see e.g. Ref. [27]. The SRG approach is based on the
unitary transformation of the many-body Hamiltonian system to decouple states with
high and low momenta [28, 29]. Such transformed Hamiltonian can be next used in the
above-mentioned computational schemes. In the case of A < 4 nuclear bound systems,
the hyperspherical harmonic (HH) method has been developed and applied by the Pisa
group [30].

The latter method has also been applied to describe the elastic Nd scattering at
the very low (< 10 MeV) incoming nucleon laboratory energies, working in coordinate
or in momentum space [31, B2]. However, to study 3N scattering a few ab initio ap-
proaches based on the Faddeev equations scheme [33] are currently the most effective
tools. The Krakow-Bochum group developed the Faddeev formalism for rigorous calcu-
lations applied to 3N continuum observables, see Ref. [2] for a general overview. Inter-
esting computational technique based on the 3N continuum Faddeev calculations with
lattice-like discretization in momentum space was developed in [34]. In 3N systems as
well as beyond them, the Faddeev formalism can be realized in a couple of ways, like
the Alt-Grassberger-Sandhas (AGS) equations [35] with the possibility to include the
Coulomb interaction between protons [36] and the Faddeev-Yakubovsky for five-nucleon
calculations [37]. Among the above-mentioned frameworks, the Density Functional The-
ory (DFT) is also interesting approach which can be used to compute ground-state and
excited configurations of medium-mass and heavy nuclei to study nuclear structure. A
brief description of the achievements and challenges within the framework of the DFT
is described in Refs. |38, 39, 40, 41]. Another recent overview of state-of-the-art ab ini-
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tio calculations of the bound state and scattering observables is given in Ref. [42] and
references therein.

The deuteron is the only one stable bound state of two nucleons. Analyzing its
properties, it was found that nuclear forces of short-range nature with a range of not
more than 2 <+ 3 fm play a key role in nuclear physics. Experimental data on nuclei and
nuclear reactions, including a huge amount of data on nucleon-nucleon (proton-proton
and proton-neutron) scattering, led to the conclusion that nuclear forces can be considered
in the first approximation as a two-particle interactions. Thus, the problem of describing
nuclear interactions can be approximately formulated as a problem of determining the
two-nucleon (2N) potential V2N,

In general, no matter what strategy (phenomenology, meson exchange picture, etc.)
is chosen to build a model of nuclear interactions, the properties of nuclei are taken
into account. With an increasing number of nucleons, the volume of nuclei increases
proportionally to the mass number (A > 4), which is explained by the fact that the
central nuclear force is a short-range interaction and strongly attractive at this range.
This makes a saturation effect. The nuclear force depends not only on the range between
nucleons (central force), but also on the mutual orientation of spins (spin-spin force), the
mutual direction of the spin and the orbital angular momentum (spin-orbit force), and
also on the orientation of the spins of each nucleon to the relative distance between them
(tensor force). The existence of a spin-orbit force helps to explain the experimentally
observed magic numbers for nucleons. The presence of a quadrupole moment in the
deuteron is a result of the tensor force contribution. It is also often convenient to split
the nuclear force to a sum of two (short- and long-range) or three (short-, intermediate-
and long-range) terms.

The first non-trivial model of nuclear force was the NN potential developed by Hideki
Yukawa [43]. Yukawa used the idea that nucleons interact via exchanges of an unknown
particle, and combined it with the idea of the short-range interaction. He predicted
that this intermediate particle should obey the Einstein-Bose statistics and estimated
its mass. Today, we identify this particle as the 7%-meson pseudoscalar boson (with
total spin 0 and odd parity). Further development of nuclear forces showed by the end
of the 60s that the NN interaction includes not only a one-pion interaction but also
processes with two pions, and much heavier meson exchanges depending on the inter-
nucleon distance. In the 90s, the most known and frequently used the meson-exchange
models were the Paris potential [44], the Bonn potential [45], and two potentials provided
by the Nijmegen group — the non-local Nijmegen potential (Nijm I) and its local version
(Nijm II) [46]. During works on their potential, the Nijmegen group collected 1787 pp
data sets and 2514 np data sets. They performed partial-wave analysis (PWA93) below
350 MeV and the Nijmegen database (or the 1992-database) was obtained. Thanks to
this approach, they were able to describe 2N scattering data using their potentials with
x?/datum = 1.08. All the above-mentioned models combine the meson exchange theory
with a more phenomenological approach in the derivation of NN potentials with a complex
operator structure. In general, such a phenomenological NN potential consists of linear
combinations of operators which are deduced from the nuclear properties and symmetries.
The interested reader can find more detailed information on how the theory of nuclear
structure has developed from a historical perspective, from the discovery of the neutron
to the present day, as well as a review of NN interactions in Refs. [47], 48 [49, 50, 5T].

At the beginning of the 21st century, the most successful realistic models of the NN
force were the above-mentioned Nijmegen (I, IT), the Argonne V18 (AV18) [52] and the



CD-Bonn [53] potentials which provided an accurate description of the 2N scattering data
and deuteron properties. In the case of the AV18 the long-range part of the interaction,
given by the one-pion-exchange (OPE), was supplemented by a purely phenomenolog-
ical short-range part. For the CD-Bonn model the short-range part was described via
exchanges of heavier mesons and processes with multiple meson exchanges. The AV18
and the CD-Bonn potentials have 40 and 43 potential force parameters, respectively.
The AV 18 potential parameters were fitted using the above-mentioned Nijmegen PWA93
results. Before the year 2000, the new sets of experimental 2N data were collected
and together with the 1992-database built the 1999-database [53]. The resulting 1999-
database was taken into account to construct the CD-Bonn potential. The quality of
description can be quantified by the magnitude of x?/datum obtained from a compari-
son of theoretical predictions and experimental data. In the case of the AV18 potential
X2 /PWA92 = 1.09 and x?/PWA99 = 1.21. For the CD-Bonn model x?/datum = 1.02 for
both databases [53]. For both potentials, only the central values of the parameters were
determined and to the best of our knowledge, no information about their uncertainties
was published.

In the course of time, the expectations of improvements in the accuracy of the fitting
as well as in establishing parameter uncertainties procedure grew. An important step in
establishing the 2N potential parameters was taken by Rodrigo Navarro Pérez and his col-
laborators from the Granada group, who carefully revised the whole 2N database. They
prepared a new database (Granada-2013 database) [54], removing from the previously
used data, those for which the experimental uncertainties had been unknown or unclearly
defined. They also excluded data sets that were inconsistent with other data, which led
to the self-consistency of the final choice of data. This procedure is described in Chap-
ter in more detail. The extended statistical tests of this database, presented in [54],
confirmed the internal consistency of the accepted data. The Granada-2013 database
is currently a standard set of data used for fixing parameters of the NN forces which
can be done by fitting parameters to the extracted phase shifts or to 2N data directly.
The free parameters of the both models of the NN force used in this thesis: the OPE-
Gaussian [10] and the family of the chiral SMS interactions from the Bochum group [9]
have been fixed with the Granada-2013 database. Specifically the OPE-Gaussian poten-
tial has been derived already by R. Navarro Pérez and collaborators. This potential is
discussed in Chapter 2.1 in detail.

Currently, the most sophisticated models of nuclear forces at the low-energy regime are
chiral interactions. S. Weinberg was the first who proved, in his seminal papers [55], 50],
that it is possible to build a Lagrangian for all possible interactions between pions and
nucleons in agreement with the symmetries (including the broken chiral symmetry) and
properties of low-energy QCD, and to construct an effective Hamiltonian in terms of
nucleons and pions. In this construction an infinite number of terms corresponding to
the Feynman diagrams for the Lagrangian can be rewritten as an pertubative expansion
with respect to some parameter. Each term in this Lagrangian is multiplied by the
corresponding coupling constants, the so-called low-energy constants (LECs), which need
to be determined from experimental data in the nucleonic or 7-N sector [9, [57]. The
power counting scheme allows organizing a perturbative ordering of the Lagrangian terms
and thus point terms dominant in the potential. The expansion parameter depends
on the ratio between the low- and high-energy scales. It is assumed to have the form

() = max (AL, %), where A, is the chiral symmetry breaking scale, whose value is a
X X

priori set to the order of the p-meson mass (A, = 770 MeV), however, values in the



range 600 MeV [58] — 1 GeV [59] are also used [9], [60], [61]. Further p = |p] is the typical
magnitude of the external (nucleon) three-momenta in the center-of-mass system (c.m.s.),
and m, is the pion mass. An important feature of the chiral expansion in powers v of
(Q/A,) is the finite number of diagrams at a given order which makes theory computable.
Finally, an effective potential can be derived from the effective Lagrangian with e.g. the
method of unitary transformations [62, 57]. This leads to nuclear forces emerging as a
hierarchy controlled by the v parameter, see Figure [1.1] and gives a nice explanation of
the different strengths of contributions to two- and many-body forces obtained within
the Chiral Effective Field Theory (YEFT). In general, the expansion of the NN force has
the form

Vin = Vi@ + ViR + Ve + Vo + Vo + -+ (1.3)

with the superscripts referring to the power v of the expansion parameter (Q)/A,)". For
example, in the lowest leading order (v = 0) the NN potential is made up by two terms,
represented by the graphs in the first row of Figure [[.I] They are the static one-pion
exchange (V7,) and the contact interaction (Vo) between two nucleons. The latter plays
role of a short-range interaction. For v = 1 all terms cancel and give no contribution to
the NN interaction. At the higher orders of the chiral expansion more terms containing
multiple mesons exchanges and various types of contact terms are present. At the next-
to-next-to-leading order (N?LO), which corresponds to v = 3, the NN potential includes
contributions from the one-, two-exchange and contact terms with up to three derivatives
which enters new short-range interactions contributing at this order. In addition, for a
3N system a 3N force appears, for the first time, at this chiral order.

Nowadays, there are a number of groups engaged in the derivation of chiral forces and
two of them have dominated the field: the Bochum-Bonn group (see Refs. [58] 63, 64) 65]
and more recently [9]) and the Moscow (Idaho)-Salamanca group (see Refs. [59, 66, 67,
68, [69]). Both teams start from the same Lagrangian but due to various methods used,
their final effective potentials differ.

The important difference between their approaches is using various ways of regular-
ization of the chiral nuclear potential. In particular, the Moscow (Idaho)-Salamanca
collaboration uses a non-local regularization procedure in momentum-space for both the
long- and short-range contributions [59]. The regulator function of the initial p and final
p’ relative momentum of two nucleons is taken as

(e

where n depends on the chiral operators (e.g., n = 4 for the one-pion exchange poten-
tial). Three values of the cutoff parameter A = 450, 500, and 550 MeV were used while
fitting potential parameters which resulted in three versions of this potential [59]. Ob-
tained x?/datum values depend on the regularization parameter A, the order of the chiral
expansion, the energy range, and the isospin channel. In the case of the next-to-next-
to-next-to-next-to-leading order (N*LO) potential and A = 500 MeV, x?/datum = 1.15
for the fit of the 2016-database [f] (see [59] for details) of combined np and pp data in the
energy range 0-290 MeV.

In their early works, the Bochum-Bonn group also proposed and used a non-local

f(',p) = exp , (1.4)

22016 database bases on the 1999 database and consists of 2932 pp and 3058 np data and includes
the data published between 2000 and 2016 which are not discarded by the Nijmegen criteria [70].
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Figure 1.1: Hierarchy of nuclear forces in yYEET at increasing orders in chiral ex-
pansion based on the Weinberg scheme. The figure is taken from Ref. [57]. Solid
and dashed lines represent nucleons and pions, respectively. Solid dots, filled cir-
cles, filled squares, filled diamonds, and open squares denote vertexes arising at
the corresponding order v; (i = 0,2,3,4,5) of the effective Lagrangian, respec-
tively. (Image source: https://www.frontiersin.org/files/Articles/515888 /fphy-08-00098-
HTML /image m/fphy-08-00098-g002.jpg; use permitted under the Creative Commons
Attribution License CC BY 4.0.)

regulator. However, due to observed strong artefacts the newest models of the Bochum-
Bonn group, use the semilocal E| regularization. It can be applied either in coordinate
space with the regulator function,

jir=r-en (2] us

where r is the internucleon distance and R is the regulator parameter, [58, [65]; or in
momentum space by changing the meson propagator, see Ref. [9].

In this thesis T use the chiral NN potentials up to N*LO™ order (the N*LO potential
supplemented by some terms from the sixth order N°LO force) with regularization applied
in momentum space (the SMS forces). This force is described in Chapter 2.2 in detail.

The understanding of nuclear systems is limited if only NN potentials are used in
investigations of systems with more than two nucleons. In principle, the NN potentials
can well describe 3N systems, and most of the results are in good agreement with the
available experimental data at laboratory nucleon scattering energies of up to 100 MeV [2].
However, there are some large discrepancies between theory and experiment already in

3The term “semilocal” means that the nuclear force is regularized locally for the long-range part and
non-locally for the short-range one.
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the 3N system, for example, the triton binding energy problem [71],[72] [73], the A,-puzzle
(the problem of describing the nucleon analyzing power for the elastic Nd scattering up to
30 MeV) [74], and the description of the deuteron breakup cross section for the symmetric
space star (SST) and quasi-free scattering (QFS) configurations [75, [76]. Therefore, in
order to obtain a more accurate description of a 3N system, a NN interaction must be
supplemented by a 3N force acting in this system.

Among all of the many-nucleon forces, the 3N force is the most intensively studied,
but its structure is still unclear. Currently, the important models of 3NF are the semi-
phenomenological ones: the Tucson-Melbourne [77, [78, [79] force, and the UrbanalX [80]
potential as well as models arising from yEFT. The latter have been derived mainly by
the Bochum-Bonn group, starting from the seminal paper [81] where the 3NF effects in
the nucleon-deuteron scattering up to the next-to-next-the leading order (N?LO) were
investigated. The 3N interaction, similarly to the two-nucleon one is derived within the
chiral approach in a perturbative way [64] [66]. It occurs for the first time at the N2LO and
has at this order only two free parameters, (the low-energy constants commonly denoted
¢p and cg). Already in the work [81] the problem of fixing of these parameters had been
addressed. The authors chose the *H binding energy and the nucleon-deuteron doublet
scattering length 2a,q to find the c¢p and cp values. The same procedure to fix ¢p and
cp was also used at the next (N®LO) order of the chiral expansion with new diagrams
for 3NF taken into account [82]. These new contributions to the 3NF do not introduce
new free parameters, however at the next (N*LO) order again several free parameters
are expected [83]. Another strategy of fixing 3NF’s parameters was used recently for
the next generation of the chiral models — with semilocal regularization in coordinate
space [27]. At the moment, the 3NF with regularization in coordinate space is available
only up to N2LO and this dominant 3NF contribution was used in [27]. Here, beside
the 3H binding energy, the total and differential cross sections at FEj,, = 70 MeV and
at Ej, = 108 MeV around its minimum were used to fix the ¢p and cg parameters.
The use of the cross section instead of the nucleon-deuteron doublet scattering length
was imposed by the strong correlation between the *H binding energy and the nucleon-
deuteron doublet scattering length (the so-called Phillips line) [84], which could bias the
fitting procedure and lead to incorrect c¢p and cg values. The choice of the cross section
as the new observable was dictated by the fact that big 3NF effects are observed for
this observable above F,;, &~ 60 MeV, thus a sensitivity of theoretical predictions to
the values of free parameters had been expected. Another reason for using the cross
section was the existence of very precise experimental data [85]. Nevertheless, the values
of ¢p and cp obtained in [27] suffer from relatively large uncertainties and are (for the
regulator parameter R = 0.9 fm): ¢p = 2.1 £ 0.9 and cg = -0.329 (+-0.103, -0.106), so the
uncertainty amounts up to 30%-40%, being quite substantial. The magnitudes of the free
parameters and their uncertainties depend also on the value of the regulator parameter
and for R = 1 fm one finds ¢cp = 7.2 + 0.9 and cg = -0.381 (+0.117, -0.122), so the
uncertainty here reaches 12%-30%. Such big values of parameters’ uncertainties suggest
that the usefulness of other observables to fix 3NF free parameters is worth investigating
as it can lead to a more precise determination of the c¢p and cg values.

Investigation of Nd scattering within the Faddeev equations in momentum space
is an obvious method to study not only the NN potential but also the 3N force. A
comprehensive overview of 3N calculations with various semi-phenomenological NN + 3N
potentials is given in Ref. [I]. Similar works were recently conducted as part of the
LENPIC (Low-Energy Nuclear Physics International Collaboration) project by applying
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the chiral interaction [I3], [14], 27] with the coordinate space semilocal regularization (the
SCS potential) [58] and with the momentum space semilocal regularization (the SMS
potential) [9, [61], 86].

Over the last ten years, in parallel with the development of nuclear force models, the
question of how to estimate uncertainties has also been considered. For example, various
ideas for estimating theoretical uncertainties have been proposed and discussed within
the YEFT framework, see Refs. [15, 58] [60, 87, 88]. In Ref. [64] a simple approach for es-
timating the theoretical uncertainty in few-nucleon calculations by the cutoff dependence
was suggested. However, as was shown by E. Epelbaum, H. Krebs, and Ulf-G. Meifsner
(EKM) [58], such a procedure has some disadvantages, namely does not allow one to pre-
cisely evaluate the effects of neglected interactions. Therefore in [58], they proposed and
applied to 2N observables a new method (“EKM prescription”) for estimating truncation
errors, which are uncertainties arising from neglecting higher orders of the chiral expan-
sion for the 2N potential. This algorithm was adopted also for many-nucleons systems,
in the cases where predictions are based on a NN interaction [13], 4] only or on NN+3N
force [27]. However, since the EKM prescription does not provide a statistical interpre-
tation of truncation errors, a Bayesian approach for calculating the posterior probability
distribution for predictions in the chiral EFT was developed, see Refs. [15, [60].

As mentioned above, there is one more additional source of theoretical errors —
the statistical errors arising from the propagation of uncertainties of free parameters of
a NN interaction. For the first time, it was studied with the OPE-Gaussian potential
in the description of the elastic Nd observables [11]. In a recent paper [12] we inves-
tigated the magnitudes of statistical uncertainties of 3N observables of the elastic and
inelastic Nd scattering at energies up to 200 MeV predicted by the chiral SMS potential
at different orders of the chiral expansion up to N*LOT. Last but not least, there are
the uncertainties arising from using the various models of nuclear interaction and the
numerical uncertainties as well as the uncertainties bound to the computational scheme
used. As was shown in Ref. [I1] the two latter ones are small in the Faddeev approach
we use. The study of the dependence of 3NF predictions on various potentials is out
of scope of this thesis where we restrict ourselves only to the chiral SMS NN and the
OPE-Gaussian interactions. The choice of these models is dictated by the fact that the
authors quantified the statistical uncertainties of NN potential parameters and obtained
not only their values but also their covariance matrices. For these forces I will discuss
the dependence of prediction on used interactions as well.
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Chapter 2

NN potentials

2.1 The OPE-Gaussian potential

The OPE-Gaussian force is a phenomenological NN potential which has been presented
by R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola in 2014 [I0]. Customarily this
potential is decomposed into the short-range Viyort () and the long-range Vione (1) parts,

V(r) = Vahort(r)0(re — 1) + Vieng(1)0(r — 1) (2.1)

where r is the internucleon distance and for the OPE-Gaussian potential r. = 3 fm.
The long-range force Viong(r) is, in turn, the sum of the one-pion exchange (OPE)
force and the electromagnetic (EM) corrections:

Viong(r) = ‘/17r + VEM . (22)

The OPE potential Vi, is the same as the charge-dependent OPE potential used in the
PWA93 by the Nijmegen group [89] and the AV18 potential [52] which reads as

‘/M-(T) = Vm,lﬁ(r) = %mfz (ﬁ> [Ym(T)gl : 52 + Tmsl’g} y (23)

where 0 and 05 denote the Pauli matrices of nucleons 1 and 2, respectively, S; o is the
tensor operator, and Y,,(r) and T,,(r) are the Yukawa and tensor functions,

Y N o o . T T
812:3(01'7’02'7’)—01'02,7’:|F1—7_1,2’,
1 — 12
e—mr
Yi(r) = : (2.4)
mr

e mr 3 3
T, (r) = 1+ 242 ).
(r) mr ( + mr + (mr)2>

The scalling mass m, in Eq. is the charged-pion mass m,+, the average value of the
pion mass m = %(mwo + 2m,+) = 138.057 MeV. Finally, f = 1/0.075 ~ 0.274 is the pion
coupling constant and the value of this parameter is the same for all pairs of nucleons
(pp, np, nn). As a result, only the difference between the charged m,+ and neutral m o
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pion mass and leads to charge dependence
ViR (r) = Vil # Vi (2.5)

The EM corrections contribute to the np and pp potentials. The np potential contains
only a magnetic moment (MM) interaction

n Sy L-S
Vit = iy (r) = —5 = (“” 2 4 ) , (2.6)

T 2merd \ 2m, I

where m,, and m, are the neutron and proton masses, p is the reduced mass of the
nucleon, 1, and p, are the neutron and proton magnetic moments, L and S denote the
angular momentum and spin operator, respectively, and L-S is the 2N spin-orbit operator.
The pp EM potential contains one- and two-photon exchange, vacuum polarization and
a magnetic moment interaction

ViR = VE (r) + VE (r) + VT2 (r) + Vil (r) | (2.7)

with detailed expressions given in Eqs. (9-12) of Ref. [54]

Below r. = 3 fm the short-range part Viuo.(r) of the OPE-Gaussian force is built
from 18 spin-isospin operators O,, 16 of these operators are the same as in the AV18
model [46]. Among them 14 operators are charge-independent,

(
L-S L-S(7-7),L*L47 - 7), (2.8)

The remaining operators
Oi6[15,18] ={T2, (01 - 52),E2T12,E2(51 - 09)Tha} (2.9)

with 115 = 37,172 — 71 - T2 introduce charge dependence. Each element of sets ([2.812.9))
is multiplied by a sum of four Gaussian functions Fj,,(r) = V;exp(—r?/(2a?)), where

a; = 1%1 and V;,, are the strength coefficients. Thus

4
> VinFin(r)

i=1

18
‘/short(r) - Z On (210)
n=1

It should be noted that in Ref. [I0] 21 operators are listed, but three of them (¢7°, 7, and
oT,) are almost equal zero in practical calculations [10], [90] and have been skipped in
the final version of the OPE-Gaussian potential. The free parameter a, which determines
the width of the functions F; ,(r), together with the operator coefficients V;,, were fixed
from the data NN collected in the Granada-2013 database [54].

The construction of this database was done in the following steps:

1. The Granada group collected 8124 available np- and pp-scattering data taken be-
tween 1950 and 2013 in the laboratory energy range FEj,;, up to 350 MeV. They
removed data with unknown or unclear statistical and systematic uncertainties.
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Operator Vin Van Van Vin
1 -19.28330126 | 126.28715008 | -648.61345585 | 694.49367435
T1 - Th 2.36233395 | -25.47505195 | 130.03224633 | -284.71844492
g1 - 09 6.05581487 | -75.18832503 | 372.41961972 | -530.80008401
TO 7.36008330 | -48.55160272 | 273.71591816 | -349.00547346
(61 - 02)(Th - T2) 1.99828652 | -22.12164190 | 70.84584496 | -50.72248959
Sia, S12(T1 - T2) 15.02271531 | -38.34776035 | 183.80564790 | -160.48060286
L- -2.61725312 | 39.43014573 | -217.03270342 | -109.64162556
L. §( T - T2) 0.01009424 2.59116238 | -26.57555840 | -77.56809604
[7,[?2(*1 ) 1.43519736 | -23.58906341 | 67.86552330 | 144.11773134
E2(51 ) -0.41138176 | 8.33346137 | -82.98819447 | 175.09618737
fﬂ(&l - 02)(T1 - Ta) | -0.09972181 2.25339230 | -51.87819771 | 175.08890636
(E . §)2 -0.26615545 | 6.63257735 | -55.34306118 | 100.71528331
(E 4)2(1 - T) 0.46072934 | -11.65544792 | 150.58275714 | -302.07573779
[s2T 0.71538487 | -18.88652666 | 141.73160452 | -182.73368764
T1s 0.63788724 | -7.90421846 | 24.23180376 | -19.73899169
(61 - 02) -0.63788724 | 7.90421846 | -24.23180376 | 19.73899169
[Ty -0.10631454 1.31736974 -4.03863396 3.28983195
52(51 NAT: 0.10631454 | -1.31736974 4.03863396 -3.28983195

Table 2.1: The central values of operator coefficients V;,, (in MeV) of the OPE-Gaussian
potential. The parameter a is 2.30347728 [fm|. Numbers from Ref. [90].

2. They performed the least-squares fitting procedure to this database and the deuteron
binding energy by the coarse-grained potential and delta-shell representation for the
short and intermediate part of the NN interaction in terms of partial-wave decom-
position at given scattering energy and angle [54], 91].

3. Some sets of data were incompatible with each other. To remove them, R. Navarro
Pérez and collaborators applied the 3o-criterion introduced by the Nijmegen group
in the PWA93. Namely, for the Gaussian statistical data uncertainties AO%*® the

residuals for observables O, <O§l“m — thwry> /A0 should be normal-distributed

within a 3o-confidence level. Unfortunately, this criterion has disadvantages. One
of them is that when non-normal outliers data is rejected, it leads to a signifi-
cantly improved fitting of compatible data (overestimation) [54]. Therefore, they
applied the improved 3o-criterion [54] to the complete database based on the idea
of 30 self-consistent rejection given by Gross and Stadler [92] and again refitted
the parameters. As a result, they obtained a new database (the 30 self-consistent
Granada-2013 database), that incorporates 6713 pp and np data points and con-
firmed the good statistical properties of their x? fit with the value of x?/datum =
1.05. Having the database and emerging phase shifts it was possible to fix 42 free
partial-wave parameters of the OPE-Gaussian potential which are linear functions
of operator coefficients V;,, [10]. The final values of V;,,, used also in this thesis,
are presented in Table The resulting x?/datum for the OPE-Gaussian force
amounts to 1.06 when fitted to data listed in Ref. [54]. The performed extensive sta-
tistical analysis of data and careful fitting procedures allowed authors of Ref. [93] to
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provide not only the values of free parameters but also their covariance matrix [93].

The knowledge of the covariance matrix of parameters allowed authors of Ref. [93] to
sample, from the multivariate normal distribution other sets of potentials parameters.
They provided us with a sample of 50 sets of parameters {V;,,a} and their central
values. Finally, we would like to note, that the OPE-Gaussian potential has a similar
structure to the AV18 force and thus it can be regarded as a remastered version of the
standard AV18 model.

2.2 The chiral SMS potential

Choosing nucleons and pions as the only particles in the theory, the chiral NN potential
can be written as

Van = Veont + Vi (2.11)

where V¢ is the contact interaction between nucleons and V. represents the pion con-
tributions to the two-nucleon potential. The long-range part of nuclear forces is com-
pletely determined by the chiral symmetry of QCD and experimental information on
pion-nucleon (7N) scattering. Moreover, the pion exchange contributions can be sepa-
rated by the number of exchanged pions at each chiral order of the chiral expansion, i.e.
Ve=Vig + Vor + ... with

Vie = V2 + V2 + VP 4+ v+ P 4

(2.12)
Var = V2 + Vi 4+ v 1 v 4

For example, the OPE potential at order Q° (LO) given directly in momentum space

reads o
W(ﬁ)(d):—(;;)ﬁ-%—al’m'q. (2.13)

Here ¢ is the relative momentum transfer of the exchanged pion ¢ = p' — p, p and p’’
are the initial and final relative momenta of the two nucleons in the c.m.s, 7, 7 denote
isospin matrices of nucleons 1 and 2, respectively. g4 = 1.29 is the pion-nucleon axial
coupling constant and F, = 92.4 MeV is the pion decay constant.

Similarly, the contact interaction between nucleons, which plays the role of the short-
range part of the NN force takes the form

‘/COHt = ‘/cont + ‘/c(02nt ‘/c(o413t (214)

The chiral potential with semilocal regularization in momentum space (the SMS poten-
tial) has been derived completely up to the fifth-order (N*LO) of the chiral expansion
by the Bochum-Bonn group [9]. Comparing to the previous chiral forces, the authors
fixed the 7N low-energy constants (LECs) using the Roy-Steiner analysis [94], skipped
redundant contact terms in the higher order of the chiral expansion (starting at order Q*,
i.e. N3LO), and, using the Granada-2013 database, determined adjustable parameters
of the potential from np and pp scattering data and the deuteron binding energy. They
also added the four leading contact terms acting in the N°LO (Q° order) F-waves from
Ref. [59] to their N*LO, potential obtaining so-called N*LO™ interaction.

The general structure of the contact interactions of the chiral SMS force up to fourth-
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order (N*LO) Q* is
Vo = Cs + Cré&y - Gy
L i S
Vim = C1* + Col?* + (Cag* + Cak?) (61 ) + 5C5 (61 - 62) - (F x q)
+Co(q- ) (7 52)+ Cr (B-61) (F-2)
N2
Vi = Dig" + Dok + D**k? + D, (q"x k;)

cont

N2
+ <D5q4 + Dek* + D2g?k? + Dy (<j>< k) ) (& - 52)
7” — — ¢ — — —
B (D9q2 + Dlok‘g) (01 + d9) - <k? X q> + (an2 + D12]€2) (1-49) (02 Q)

+ (D13Q2 + D14k‘2) (61-4) (02 - q) + D504 - (@x E) 0 - <(7>< E) ,

+

(2.15)

..........

strength of short-range interaction and should be find from data.

Application of nuclear forces derived from YEFT in few- and many-body problems
requires regularization for the pion exchange contributions to reduce the amount of
finite-cutoff terms and to avoid divergences after substituting, e.g., into the Lippmann-
Schwinger equation. In Ref. [58|, the Bochum-Bonn group implemented the local regu-
larization of the long-range potential in coordinate space, see Eq. [I.5] Although such a
regulator made it possible to significantly reduce the long-range cutoff terms, its applica-
tion turned out to be difficult for the regularization of 3NFs and currents at higher orders
of the chiral expansion. Therefore, the Bochum group introduced a local regularization
scheme of long-range forces in momentum space by emplyoing a regularization of the
static one-pion exchange propagator [9] in form of regulator

f(@',p) o< exp (—@) , (2.16)

with the cutoff values of A = 400,450, 550, and 550 MeV. Such an regulator, according
to authors of Ref. [9], contributes only to the short-range terms and does not influence
the long-range pion exchange potentials.

Implementing local regularization to the long-range potential and multiplying the

contact terms with a non-local Gaussian regulator exp (—p /QAEP 2) in combination with the

very detailed fitting procedure of the NN contact LECs leads to a high-quality potential.
Additionally, for the chiral SMS potentials of Ref. [9] obtained with the Granada-2013
database [10] the covariance matrices of its free parameters (LECs) at all chiral orders
(LO — N*LO™) have been obtained. The number of free parameters (LECs) is 2, 9, 9, 22,
23, 27 at LO, NLO, N2LO, N3LO, N*LO and N*LO™, respectively. A sample visualization
of correlations among the various LECs is given in Figure 10 of Ref. [9] for the chiral
N4LO* SMS potential with A = 450 MeV.

Currently, the chiral SMS NN potential delivers the best description of NN data. For
example, the SMS N*LO™ with regularization parameter A = 450 MeV gives x?/datum =
1.06 (np scattering data) and x?/datum = 1.00 (pp scattering data), see Table 4 of Ref. [9]
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up to 300 MeV. In addition, the availability of covariance matrices of LECs for all chiral
cutoffs and orders allows us to study, for the first time for a chiral force, the propagation
of uncertainties of NN interaction parameters to 3N continuum observables, see Chapter [3]
and Chapter [5]
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Chapter 3

Application of a covariance matrix

In Chapter (1} I have outlined the advantages of using the covariance matrix of NN po-
tential parameters and briefly mentioned the types of errors relevant to the Nd scattering
observables. In Section [B.I]T discuss the various sources of theoretical uncertainties in the
ab initio type calculations based on the chiral SMS model at various orders, neglecting
the 3N force present in describing the 3N processes. The main results of such a study are
already shown in our papers (Refs. [I1, [12]). Studies of correlations among all calculated
2N and 3N observables, as well as between observables and specific potential parameters,
are discussed in Section [3.21

3.1 Uncertainty quantification in 3N studies

3.1.1 Determination of statistical uncertainty in a 3N system

As defined in Chapter [1], the statistical uncertainty refers to an error arising from uncer-
tainties of parameters of a given NN interaction. In our method of estimation, compu-
tation of the statistical uncertainties requires a big sample of predictions obtained with
different sets of parameters within one model of interaction.

The algorithm for determining the statistical uncertainty is as follows, its further use
for the chiral SMS force can be divided into the following steps:

1. Preparation of sets of the potential parameters.

Having at our disposal the covariance matrix for the potential parameters, as well
as the central values of the parameters, I sample 50 sets of the potential parameters
from the multivariate normal distribution. This number of sets guarantees a statis-
tically significant probe, as will be shown in Chapter [f| The multivariate sampling
was done using the Mathematica® [05] computing system (see Appendix A).

2. Computing observables for each set of potential parameters

For each set S; (i =0,1,...,50) I computed the deuteron wave-function by solving
the Schrodinger equation and the ¢t-matrix elements from the Lippmann-Schwinger
equation and solved the Faddeev equation to construct the transition amplitude
from which the 3N observables can be obtained for all investigated models of NN
interaction. From solutions of the Lippmann-Schwinger equation 2N observables
can be also computed. More details about these calculations will be given in Chap-
ter [ As a result, an angular dependence of various 3N scattering observables is
known for each set of parameters S;. The obtained predictions can be used to study:
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(a) for a given observable X at an energy E and at a scattering angle 6, the
empirical probability density function of the observable X (E, 6) resulting when
various sets S;, (i = 1,...,50) are used;

(b) for a given observable X, both the angular and energy dependencies of results
based on various sets .5;.

This, in turn, allows one to find the magnitude of statistical uncertainty of a given
3N observable X and to analyze correlations among all observables.
3. Quantification of the statistical uncertainty

Various estimators can be used to quantify the statistical uncertainty of the observ-
able X (FE,0). For example, by assuming there are 50 sets of potential parameters:

50 _
(a) The sample standard deviation o(X) = \/ﬁ > (Xi(E,0) - X(E, 0))2, where
i=1

X(E, ) is the mean value of predictions and X;(E, ) is the value of the i-th
point in the dataset for each computed observable.

(b) $A100% = 3 (max{X;(F,0)} — min{X,(E,6)}), where the minimum and max-
imum are taken over all predictions {X;(E,6)} based on 50 sets of LECs
S;i=1,2,....50.

(¢) $06s% = 35 (max{X;(E,0)} —min{X;(E,0)}), where the minimum and maxi-
mum are taken over 34 (68% of 50) predictions based on different sets of LECs.
The set of 34 observables is constructed by discarding the 8 lowest and the
8 highest predictions for a given observable and at a specific scattering angle
and energy.

(d) %IQR: half of the standard estimator of the interquartile range being the dif-
ference between the third and the first quartile IQR = Q3 — Q1. For the
sample of size 50, this corresponds to taking half of the difference between the
predictions on 37th and 13th positions in a sample sorted in ascending order.

The estimators %Awo% and o (X)) are sensitive to possible outliers in the sample, and thus
accepting them as estimators of dispersion can lead to overestimation of the statistical
uncertainty. On the other hand, due to the fact that the IQR is calculated using only half
of the elements in the sample can leads to an underestimation of the theoretical uncer-
tainty. In addition, o(x) is derived under the assumption of normality of sample, which
is not necessarily fulfilled in the case of 3N observables [I1]. Therefore, we chose %A%%
as an optimal measure for dispersion of predictions and consequently as an estimator of
the statistical uncertainty [I1].

3.1.2 Determination of truncation errors with the EKM method

In addition to the statistical uncertainties also the truncation errors, which play the role
of systematic uncertainty, can be evaluated. As was outlined in Chapter[l], the truncation
errors are uncertainties arising from restriction to a given order of the chiral expansion.
One way to evaluate truncation errors is using the EKM approach [58]. Namely, any 3N
scattering observable X can be expanded up to the k-th order of the chiral expansion Q*
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(k=0,2,3,...) in the form
X=X 4L AXO L AX® L AXO) 4 4+ AX® (3.1)

where AX® .= X&) _ XO AX®) .= Xk _ xE-1) with k> 2, and X® is a prediction
obtained at k-th order.

The truncation error 6(X)*) of an observable X at k-th order of the chiral expansion
with £ =0,2,... is given as

§(X)@ > max (Q* X)) |

§(X)? > max (Q°| X, QX — xO]) | (3.2)
(k) ~ k+1) 5 (0)| k+1-35] A () >
O(X)™ = max (Q"X, QIAYY) for j =2,

with the additional constraints §(X)® > Q8§(X)©® and §(X)*® > Q§(X)*=Y for k >3
imposed on the truncation errors. The chiral expansion parameter () is defined as

() = max (Aﬁb’ %) ) (3.3)

In my calculations the breakdown scale of the chiral expansion A, was chosen as A, =
600 MeV based on the results from Refs [13, [14] with the physical pion mass m, and the
c.m.s. momentum p corresponding to the considered incoming nucleon laboratory energy
Elab-

3.1.3 The truncation errors with a given Bayesian model

The EKM approach does not provide a statistical interpretation of the alleged uncertain-
ties, thus we apply also the Bayesian approach to estimate the truncation error. The
authors of Refs. [60] [15] developed the Bayesian method to calculate the posterior prob-
ability distribution of truncation errors in YEFT for the np total cross section at selected
energies by applying the chiral NN potentials from Ref. [58]. Within the LENPIC project
the Bayesian model of Ref. [15] was slightly modified to study truncation errors not only
in NN but also in 3N scattering, [61]. The same Bayesian procedure was already used in
Ref. [12].

This Bayesian procedure of determining the truncation errors bases on rewriting Eq.
in terms of dimensionless expansion coefficients ¢, in the form

X=XO L AX® L AXO) p AXD 4 AX® 4

3.4
= Xref (CO + C2Q2 + C3Q3 + C4Q4 =+ .. ) , ( )

where AX®) are the same as in Eq. (3.2) and the dimensionless expansion coefficients
Ci are

X k) _ x(k=1)
S — 3.5
* Xreka ( )
The overall scale X, i
max (| X ], Q72|AX ) for k=2,
Xref = (36)
max (| X @], Q72[AXP|,Q3|AX®)|) for k >3,

21



assuming that AX® are known explicitly up to the &k = 3. One Can estimate the size

of the truncation error at the k-th order of chiral expansion as sxk Bayes = X,ctA where
A=3Yr2 . aQ = Zfi,irl c;Q" is distributed, given the knowledge of {c;<x}, with a

posterior probability density function [15]

Jode pry (Al ) pr(e) [Teapr(ci | ©)
Jo~ de pr(e) [Tieapr(ci | ©)
Here the prior probability density function pr(c; | €) is taken in form of a Gaussian N(0,¢%)

function and pr(c) is a log-uniform distribution in range (c<,¢-). Set A is defined as
={neNy|n<k A n#1lAn#m}, me{0,2,3} and

pry (A [ {eick}) = (3.7)

k+h

k+h
pr,(A | ¢) [ H / de;pr(c; | €) A — Z C]Q]] (3.8)
i=k+1 j=k+1

with h being the number of the chiral orders above k£ which contributes to the truncation
error. The resulting pr, (A | {ci<x}) is symmetric about A = 0 thus one can find the
degree-of-belief (DoB) interval (—d,(cp ), d,(f )) at the DoB level p, as an inversion problem
from the numerical integration

d(P)

p= [ om(& Heshaa (39

and get the truncation error sx Bayes = X,e fd,(cp ),

In following we use h = 10, é. = 0.5, ¢~ = 10, A, = 650 MeV and MT = 200 MeV

which corresponds to the model C§% , from Ref. [61]. The two latter quantities enter

the expansion parameter ) = max A_b’ Aff) with the momentum scale p defined in Eq.
(17) of Ref. [61]

/| A
P = A——HmElab s (310)

where A = 2 for the deuteron, m is the nucleon mass m = 2m,m,,/(m, +m,) = 938.918
MeV /c? and Fl,, is incoming-nucleon laboratory energy.

The detailed expression for pr;, (A | {c;<x}) at assumed priordl] which were shown in
Appendix AP|of Ref. [61] takes the form

1 Cz k/2
A {e =
pry, (A | {ci<k}) 7”72‘32 <02+A2/q2>
k A k A2 3.11
Xr[m%} (@+&)-r[sx] (a+5) O
1

Since, in general, the coefficients ¢ are unknown a priori, they can be obtained from various initial
probability distribution (priors) with a characteristic size.
2The expression was first given in Appendix A of Ref. [T5]
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kth
where ¢ = Y Q%, 2 =Y ,., ¢ and the incomplete gamma function is
i=h+1

o0

[(s,z) = /ts_le_tdt . (3.12)

T

3.2 Correlations among observables in 2N and 3N sys-
tems

In the second part of this thesis (Chapter @ I focus on looking for a set of observables
which due to their uncorrelation can serve as database to precise fixing the free parameters
of the nuclear interaction. This is especially important in the context of fixing param-
eters of three-nucleon interaction. In general, to fix free parameters of the 3NF various
observables can be used. In the older models (like the Tucson-Melbourne [77, [78| [79] or
the UrbanaIX [80]) the *H binding energy and the density of nuclear matter have been
used. In the case of chiral interaction, a three-nucleon force occurs at the N2LO for the
first time. Its two free parameters have been fixed from the *H binding energy and the
nucleon-deuteron doublet scattering length ?a,q in Ref. [96]. More recently the differen-
tial cross section at medium energies has been used instead of ?a,q [86]. Thirteen new
free parameters for 3NF are expected at N*LO order. Fixing them will be a tremendous
computational effort, and therefore the set of observables used for this must be care-
fully selected. Specifically, to minimize uncertainties of fixed parameters, the selected
observables should be uncorrelated.

As mentioned above, in the case of the chiral models, besides the 3H binding energy,
the differential cross section for Nd elastic scattering at Ej,;, = 60 MeV around its min-
imum has been used to fix free parameters of 3NF. However, the question of a possible
correlation between the binding energy 3H and the scattering cross section is still open.
The study presented in this thesis allows me to answer this question and, in a systematic
way, to point out the correlated observables in the 3N system. However, a study of cor-
relations in the two-nucleon system is also interesting and can impact future procedures
used to fix free parameters of the two-body force interaction. A systematic study of the
correlations between the parameters of the NN potential and two-nucleon observables
can be valuable, too. While there exist many experimental data at low energies most of
them are the unpolarized cross sections or polarization observables with only one particle
polarized in the initial state. Knowledge if one of these observables is strongly correlated
to given potential parameter would allow ones to use it to fix this specific parameter.
This, in turn, reduces the number of remaining free parameters what simplifies the fit-
ting procedure. Existence of such a correlated observable-potential parameter pair could
also motivate experimental groups to perform precise measurement of such an observable,
especially if a suitable experiment has not been performed yet. My work is a first step
in this direction.

In the past, a study of correlations has not been possible, at a statistically significant
level, due to the lack of a sufficiently large number of the existing potentials and data.
Currently, this situation is changed. Using the OPE-Gaussian or the chiral SMS forces
allows us to prepare many sets of the potential parameters and thus, after a procedure
described in subsection [3.1.1], obtain a number of predictions big enough to analyze cor-
relations and to draw a plausible conclusion. Some attempts to study correlations in
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The magnitude of r | Interpetation

0<|r <03 very weak (no correlation)
0.3<|r| <05 weak

0.5 < |r| <0.7 moderate

0.7<|r <0.9 strong

09<|rl <1 very strong

Table 3.1: Interpretation of correlation coefficient. “No correlation” in the second row
should be understood as no linear dependencies between observables.

few-nucleon sectors are given in papers [97], [98] and [99]. In Ref. [97] authors study,
using the Monte-Carlo bootstrap analysis as a method to randomize pp and np scatter-
ing predictions, correlations between the ground states of the ?H, 3H and “He binding
energies, focusing mainly on the Tjon line [I00] (correlation between *H and *He binding
energies), but do not study the scattering observables. In Ref. [98] the correlations be-
tween three- and four-nucleon observables have been studied within the pionless Effective
Field Theory with the Resonating Group Method. Because this approach can be applied
only to processes at very low energies authors focus on the study of bound-state proper-
ties and the *H-neutron S-wave scattering length, finding the latter correlated with the
3He binding energy. A.Kievsky et al., [99] studied some correlations between low-energy
bound state observables in the two- and three-nucleon system, the triton binding energy,
and extending this to study some features of the light nuclei and beyond up to nuclear
matter and neutron star properties. Using a simple model of “Leading-order Effective
Field Theory inspired potential” they found evidence of the connection between few- and
many observables. Note, none of these works focuses on the study of correlations in the
context of three-nucleon observables.

To find a correlation coefficient between two variables, e.g. observables, first, I need
to collect pairs of predictions obtained with various sets of potential. I use the same sets
of parameters as in Chapter [5], supplementing them, if needed, by additional sets. Having
predictions I calculate the standard sample correlation coefficients r(X,Y)

= (3.13)

wsn
[

where X and Y stand for chosen observables or parameters and index runs over the

_ _ _ n B n
sets of n = 50 versions of potentials. X and Y are means X = > z; and Y = )y,
=1 i=1

respectively.

Interpretation of correlation coefficient is arbitrary in many respects, and we can not
be too strict with it. The correlation coefficient takes values from -1 to 1. A value
of r = +1 shows increasing linear dependence between X and Y while » = —1 means
decreasing linear dependence between X and Y. If the correlation coefficient equals 0,
then there is no linear correlation between the variables, however, variables can still be
nonlinearly dependent. Table provides the qualitative interpretation of the correla-
tion coefficient that we use in this thesis. In our studies, determining the correlation
coefficient for a given pair of observables, we have in practice only one 50-element sample
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at our disposal. Thus estimation of uncertainty of computed sample correlation coeffi-
cients is not straightforward. To find this uncertainty I apply three methods. Firstly, I
make use of additional samples, see Chapter [6.I] Secondly, I use the well-known Fisher
transformation [I0T} 102]. To construct a confidence interval by Fisher’s method, it is
assumed that X and Y have a bivariate normal distribution, which is only approximately

satisfied by observables [II]. The variable Z = %ln (}Egig), which has the standard

normal distribution is used to construct a confidence interval at a given confidence level
v. After inverse transformation of confidence limits one gets the confidence interval for
r(X,Y). Applying this method to various pairs (X,Y’), I found that the obtained half
confidence interval at v = 0.9 is usually = 0.05 for r =~ 0.9 and ~ 0.25 for r ~ 0.25. This
shows that determined values of correlation coefficients should be treated qualitatively.
Thus, in following, I will restrict myself to rather qualitative discussion of correlation
coefficients. Since I am interested is determining whether given observables are or not
are correlated, such qualitative conclusions are sufficient at this stage of the research.
Finally, I used also the bootstrap resampling method [103] 104, 105] to estimate uncer-
tainties of r(X,Y’). The advantage of the bootstrap method is in working directly with
sample elements without assumption on normalness of distribution of X and Y. Resam-
pling (up to 1000 (X,Y)-elements) allows me to find the properties (e.g. distribution
or standard derivation) of bootstrap estimator for the correlation coefficient and thus
estimate uncertainty of original received (X, Y’) again as half of bootstrap confidence in-
terval. Typically, the half of bootstrap confidence interval at v = 0.9 is & 0.05 for r ~ 0.9
(=~ 0.23 for r =~ 0.25). In most cases, the Fisher method gives a much larger uncertainty
than the others. However since we interpretate the correlation coefficient qualitatively
the different values of uncertainties of (X, Y") do not change our conclusions.

My results for sample correlation coefficients and resulting conclusions are presented
in Chapter [0
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Chapter 4

Theoretical formalism and numerical
realization

All results in this work have been obtained in momentum space by resorting to partial-
wave decomposition (PWD) what is convenient for calculations in the framework of the
Faddeev equations. We use the non-relativistic formalism, neglect the Coulomb force and
the 3N interaction.

4.1 2N bound state

The Hamiltonian of two-nucleon systems can be written in general form
H® = HP + Vox (4.1)
where HSQ) is the kinetic energy of two nucleons and ‘/2(131) is the NN potential. The kinetic

energy of the two-particle system is

@ B BopR P
g® _ _r 7 4.2
O omy + 2ma 2 o (42)

where = % is the reduced nucleon mass and M = m; + my. Using the average
2 . .. — — .
nucleon mass m; = me = m = —2" and individual momenta p;, p», the relative

mp+mn

momentum 15‘ — Dupz—mepr _

1
. mi1-+mso 5
P =Dy + Dy
The deuteron bound wave function |¥,) is a solution of the time-independent Schrédinger
equation

(P2 — p1) and the total momentum for two nucleons is

(HE + Vax ) 1Wa) = Eal%a) | (4.3)
where E; < 0. Using Eq. (4.2) and assuming that Von depends only on the relative
degrees of freedom leads to two separated equations

—92 S

L g + [ @ (Vi ) (9 ¥a) = (Ea = Eem) G10) (1.4

0
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and
2

;)—m <73\‘Ifd> = Eem. <73!‘I’d> : (4.5)

Since the total momentum of the system is conserved, the relative energy of the center-
of-mass (c.m.) between two nucleons, E. ., , equals zero (deuteron is at rest) and equa-
tion , which describes the free motion of a particle with mass M, is omitted.

We use the momentum partial-wave representation

[paz) = |p(ls)jmy) [tmy) (4.6)
where p = |p| is the magnitude of the relative momentum, and «s is a set of discrete
quantum numbers describing 2N system |ao) = |(Is)jm;) [tmy), where [, s, j, and ¢

denote the orbital angular momentum, total spin, total angular momentum, and total
isospin of 2N system, respectively. Further m; (m;) are the projections of j (¢) onto the
quantization axis. The coupling of the above-mentioned quantum numbers is given by

[p(ls)jmy) = ellsfs mu,my; — my,my) [plmy) [sm; —m)

my
|smg) = 12/2: C 11s'mm—mm 1m 1m—m
s/ — » 2727 y 101, Tts 1, 11ts 92 1 92 s 1 ) (47)
mi=—
1/2
11 1 1
|tmt>: ;/2C(§7§7t;y7ms_yvmt) ‘§V> §mt_y> )

where my is the projection of the orbital angular momentum. Further, spin states |sm)
correspond to 2N spin states with the total spin 0 or 1; C(j1, o, J; m1, Mo, m) denote
the Clebsch-Gordan coefficients. Similarly, [¢tm;) is the ispospin state. We assume for
individual particles the isospin projection v = % for proton and v = —% for neutron.

The 2N states are antisymmetric as for a system of two identical fermions, which leads
to additional constraint on quantum numbers [, s and ¢:

(=)t = 1. (4.8)
The partial-wave states (4.6]) fulfills

é(p—p')

m(0,9) ,
R (0,9) (4.9)

<T9l|plml> =

where Y}, (0, ¢) denotes the spherical harmonic function with angles 6, ¢ pointing di-
rection of momentum p [106]. The completeness relation for |pas) states is expressed

as
oo

Z/dm)2 |pag) (pa| =1 . (4.10)

ag 0

The only two deuteron components that contribute to the bound state, 3S;- and 3D,
correspond to [ = 0 and | = 2, respectively, (we use the standard notation 2*7'/;) with
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N?LO | N°LO | N“LO | NZLOT | OPEG | Exp. [107]
21999 | -2.2233 | -2.2233 | -2.2233 | -2.2225 | -2.2246

40.0041 | £0.0024 | £0.00099 | +0.0012 | 0.00001 | £0.0092
05.3665 | 95.3034 | 95.4633 | 95.4114 | 94.6987

; -
PESOIAT] 10,0041 | £0.0024 | £0.00099 | £0.0012 | +£0.0412

Ed [MGV]

Table 4.1: The deuteron binding energy F, with the statistical uncertainty (see text in
Chapter (3.1.1)) obtained with various NN interactions.

s=7=1and t = m; = 0. This leads to two coupled equations

2

9 o
%wz(p) +) / dp'p” (pl|Vax|p'l') Y (p') = Eathu(p) (4.11)
0

I'=0

for the partial-wave components of the deuteron wave function ¢;(p) = (pl|1bq) =
= (p(11)1mq| (00[¢q).

In numerical realization the integral can be discretized using the Gaussian
quadrature. We use Gaussian points and weights (p;, w;) with j = 1,2,..., N, distributed
in the finite interval (0, p), where the upper limit of the integration, p has to be adjusted
to the used NN potential V5n. Using this Eq. can be expressed as

2 2 N
b
- 1(pi) + ;) 21 w;p? (pil|Van|p;l') v (pj) = Eatbi(pi) - (4.12)
1=0 j=

We solve the resulting eigenvalue problem using FORTRAN code together with the LA-
PACK library [I08] and compute the deuteron wave function and the deuteron binding
energy, F;. The deuteron binding energy computed with the chiral SMS potentials at
various chiral orders with cutoff A = 450 MeV and with the OPE-Gaussian force is given
in Table A1

In the final step the deuteron wave functions ¢ (p) and 1s(p) require normalization
via

/ dpp? (2(p) + 2(p)) = 1. (4.13)

0

In Figure [.1] T show the 3S;- and 3 D;-states obtained by using the chiral N*L.O, N3LO,
N4LO, N4LO* SMS forces and the OPE-Gaussian potential. It can be seen that all
predictions almost coincide with each other. The magnitude of 3S;-state is nearly 70

times bigger than in ®D;-state. The corresponding 3S;-component probability is given in
the bottom row of Table (.1l
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Figure 4.1: The deuteron wave functions in momentum ¥,;(p) space. The 3S; and the
3D, components are shown in the left and right columns, respectively. The black solid,
blue dashed, red dashed-dotted, orange dashed-dot-dotted and green dotted curves are
for the chiral N2LO, N3LO, N*LO, N*LO* and the OPEG potentials, respectively.

4.2 2N scattering

In this chapter, I introduce the essential components of 2N scattering calculations. I
start with a discussion of the Lippmann-Schwinger equation for the scattering state in
momentum space. This equation can be solved for the transition matrix (f-matrix) via
PWD. Next, I obtain K-matrix, which in turn, is related to the scattering matrix S-
matrix. S-matrix can be further expressed in terms of a linear combination of Wolfenstein
parameters [I09] that allowed us to compute observables, e.g. the cross section and

various polarization observables.
4.2.1 The Lippmann-Schwinger equation

The scattering state |¥5) of two particles in momentum space, fulfils the time-independent
Schrodinger equation

(Ho+ Van) |¥5) = E V5 (4.14)
with £ > 0. Its solution fulfils the Lippmann-Schwinger equation
1
Uz = |U —Von |V 4.15
95) = 100) + 7z Ven 19 (1.15)

with e — 0%, If we write down (4.15)) in coordinate representation, we will get two parts
of the solution — a spherical outgoing wave (+ic) or a plane incoming wave (—ic) [[] see
Refs. [T110, 111] for more details. The state |¥y) is momentum eigenstate

(4.16)

Le_je"_states appear, for example, in the photodisintegration process (y + 2H — n + p).
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where p' is the relative momentum of the two nucleons and E depends on the incoming
nucleon energy in the laboratory reference frame ﬂ The solution of Eq. can be
denoted as |¥3) = [B)*.

Eq. can be rewritten as

B)" = [B) + Go(E +ie)V [p) ", (4.17)
where V' = V,on and the free propagator
~ 1

Go(F) = F_Hy (4.18)
Using the definition of the transition operator (¢t-matrix)
VBT =t"p) (4.19)
and substituting it into Eq. we find
VP =V P+ VGo(E+ie)V[p)" (4.20)
and thus
tH D) = VD) + VGo(E +ie)tt ) . (4.21)

The latter equation is the form of the Lippmann-Schwinger equation for the operator ¢*
tt =V + VGo(E +ie)tt . (4.22)

Note that in general case Eq. can be iterated for scattering on V'
t=V 4+ VGV + VG VGV + VG VG VGV + ..., (4.23)

this is the so-called von Neumann series. Finally, one can express |p)" through the
t-matrix }
B)" = [P) + Go(E + ie)t(E +ie) B) . (4.24)

Considering the t-matrix for general states ‘f)’>, |P), which obeys the Lippmann-Schwinger
equation (4.15), we get the off-the-energy-shell amplitude [110]

(PIt(E +ig)|p) = (P|V(E +ie)|p)

o0 =1 —
. e . P'tp) (4.25)
+ lim [ dp" (P|V(E +ie)[p” , ,
e—0t P <p | ( )|p > Ep/ + 1€ — Ep//
0
where E,; = % and E,» = #. In a similar manner as has been done for the deuteron,

PWD projection of Eq. (4.25) onto the same complete set of basis state (4.6) and using

QGiven Elab and assumin that my, = My =M each nucleon in the C.1m.S. has a relative momentum
P )
=2
1

which refers to an unknown F = E.,, = ’;’,—ZL. In turn, £ = B, — % = 5 Eap.
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the upper limit for the p” integration, p, results in

/12 /] /I "1
' g . 1" (Plas|VIp'ay) (p'agtpas)
Watltpas) = (of]Vipes) + 3 lim [y e g
The t-matrix at £ = %2 is related to the K-matrix [I10] and to the S-matrix via
t=(1+ 2irupK) 'K , (4.27)
and
S = (1 + 2imupK) (1 — 2irupK) ™", (4.28)

which is used to get phase shifts.

4.2.2 2N scattering observables

Studying the elastic scattering of particles with spin 1/2 allows one to carry out much
more diverse measurements than only cross sections. Experiments can be made for dif-
ferent polarization of the beam, target and/or outgoing particles, polarized individually
or simultaneously. As a result, there are 16 x 16 = 256 of various experiments, but due
to the parity conservation and the time- reversal symmetry, the number of independent
experiments is reduced up to 11 np- and 9 pp-measurements [I10]. The general scattering
amplitude can be expressed in terms of the M-matrix and its representation is
M=a+c(@ +3)N+m (alN) (@N) +(g+h) (3115) (52}3)

. . (4.29)

+(g—h) (51K> (52[() ,

where a, m, ¢, g and h are the Wolfenstein parameters [109, 110] (see also [I12] for an
exact determination from scattering observables) and

=/ s =/ —
p+p Y p Xp
=/ =] N — VIR
P+ Bl P> 7|

o
Il

77 (4.30)
Since the S -matrix contains full dynamic information, then decomposing it on the partial-
waves basis to obtain S; -matrix elements and taking them on-the-energy-shell allows to
calculate the partial-wave elements of M, see Ref. [110],

1
My, = — Z C (U, s, jyms —mi,ml,mg) Yi(m—my) (0, 0)
P (4.31)

x i (S92 — 6m) C (1, 8,53 0,mg, mg) /w20 + 1) [1 = (=1)=H]
The partial-wave Sj;-matrix element is nothing else but S5 = (I'sj|S|lsj).
In the uncoupled case (I =1') and for a given j, s the S-matrix can be parameterized

by one phase shift ’ .
Sie = e, (4.32)
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For the coupled channels (for which the nuclear force allows for changes of angular mo-
mentum) the S-matrix is 2 X 2 unitary and symmetric. According to the Stapp parame-
terization [I13] it can be written as

g <Syj‘;1j—1 S%le) _ ( . cos(25)exp(2i51) isin(?e)exp(i(51.+ 62))> | (4.33)
Siio1 Sty isin(2e)exp(i(dy + 92)) cos(2¢)exp(2ids)
where 1, 5 are phase shifts and ¢ is a mixing parameter.
Using the M-matrix [I10], the resulting spin averaged differential cross section is given
by
do

1
-~ T
o= I{MMy (4.34)

The polarization of one of the two particles is defined as

Tr{MM'G} 8Re{c*(a+m)} .
SRy, (MM} (435)

where ¢ can be either ¢, or ds.
The remaining 2N scattering spin observables expresses as

D_ Te{M(&- N)M'(&- N)}

Te{MM?'} ’
_ Te{M(GN x p)MH (& - K)}
B Tr{MMT} ’
7N NMT(G - E
. Te{M (6N x p)M'(¢ - P)} | (4.36)
Te{MM?'}
o= T{M(G - p)MI(G - K)}
B Tr{MMT} ’
o B{M@G-pMI(G - P)}
Te{MM'} ’
where p = (sinf cos ¢,sinfsin ¢, cosf). The observable D determines the change of

polarization with respect to normal direction, the depolarisation observables R, R/, A,
and A" determine the four possible linear combinations referring to beam and target spin
polarization in scattering plane.

In the case of two polarised particles we find the spin correlation coefficients, e.g.

AR Tr{MMT}

(4.37)

More detailed information about the 2N scattering observables and the partial-wave de-
composition can be found in Ref. [110].

4.3 3N scattering

In this chapter, I outline the foundations of the formalism of the Faddeev equations for
3N scattering calculations. I start with a discussion of the Faddeev framework. This
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Figure 4.2: Jacobi momenta p; and ¢; for system of i, j, k particles.

leads me to discussion how to calculate the elastic Nd and the neutron induced deuteron
breakup scattering observables.

4.3.1 The Faddeev equation

Theoretical investigations of Nd scattering can be performed within the Faddeev formal-
ism [2]. This is one of the standard techniques to investigate 3N reactions and has been
described in detail many times, see, e.g. Refs. [1, 2, 110]. In the following I will just
briefly describe the key points of the formalism and its practical implementation.

In case of the 3N system it is convenient to use the relative (p'and ¢) momenta and the
total 3N momentum, P expressed in terms of individual nucleon momenta /;Z-, ie{1,2,3}

1/ -
7= (k —k)
b 2(2 3 3

L 2/ 1/ -
1 q:§<k1_§(k2+k3)>7 (4.38)
ﬁ=E1+E2+E3~

1

1

l

=

The Jacobi momentum p is a relative momentum of nucleons 2 and 3 and the Jacobi
momentum ¢ is the momentum of nucleon 1 with respect to the center-of-mass of the 2-3
subsystem. The definition can be extended to other permutations where the Jacobi
momenta p;, ql are used, see Flgure 4.2 We are working in the center-of-mass of the 3N
system (77 = O) which allows us to deal with two instead of three independent momenta.

Assuming that the neutron and proton masses are the same and equal to m, the full
3N Hamiltonian reads

H = Hy+ Vo3 + Viz + Vig + Vigs (4.39)

where Hy = %2 + %% is the free 3N Hamiltonian in the c.m. frame written in terms of

the Jacobi momenta, V;; denotes the NN potential acting between nucleons ¢ and j, and
Vo3 is the 3N potential, which can be splitted into a sum:

Vigs = VI + v 4 v® (4.40)

where V4(i) is symmetric under the exchange of nucleons j and k such that ¢ # j # k. In
the case of three identical particles the totally antisymmetric state |¥) of three nucleons
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is given by

(W) = |¢1) + [¢2) + [¢3) = (1 + P) [¢n) (4.41)

where the permutation operator P = Pj5Po3 + P13 Ps3 is built from single particle permu-
tations P,;, which exchange particles ¢ and j and |1/y) is the Faddeev component of |U).
The Faddeev-component of three-nucleon bound state |¥,) fulfills [7T]

1) = Got P [¢1) (4.42)

where the two-nucleon t-operator obtaining by Eq. acts now in the 3N space and
Gy is the free 3N propagator. For the 3N bound states, the energy argument of GGy plays
the role of the binding energy.

The transition amplitude U for the elastic Nd scattering is calculated prior to com-
puting 3N scattering observables. Its matrix elements between the initial Nd |¢) and
final Nd |¢') scattering states, neglecting 3NF, are given by [2]

(@|U1g) = (¢|PGo |6) + (¢| PT9) - (4.43)

For the deuteron breakup reaction the transition amplitude Uy fulfils

(06|Uol@) = {(&6|(1 + P)T¢) , (4.44)

where |¢)) carries the information about the final free three-nucleon breakup channel.
The Faddeev equation for the auxiliary state T'|¢) with nucleons interacting via a NN
interaction V' entering a t-matrix and a 3NF V},3 expresses as [2]

T|¢) = tP|¢) + tPGoT |6) + (1 +tGo) VL (1 + P) [¢)

(4.45)
+ (1 +tGo)V" (L + P)T|¢) |

where the initial state |¢) = |pama) |gomy) is composed of the deuteron wave function
|pq) and a relative momentum eigenstate of the projectile nucleon, |gy), with correspond-
ing the spin quantum numbers my and my, respectively. This is the key equation for
the nucleon-deuteron scattering and also the basis of predictions shown in this thesis.

Neglecting the 3NF, Eq. (4.45) reduces to
T|6) = tP|6) + tPGAT|6) . (4.46)

Now we introduce momentum basis states for the 3N systems. We perform PWD of
three-nucleons operators in |pga) basis

Ipgar) = ‘pq (Is)g <>\%) I(51) JMJ> '(t%) TMT> —

' 1
S CLTsmg My =y, M) )00 o (33 ) 1My =i} ()

1 1
Z C(th, my, MT — My, MT) |tmt> §MT — mt> .
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Here, [, s, 7, and t denotes the orbital angular momentum, total spin, total angular
momentum, and total isospin of the 2-3 c.m.s. subsystem, respectively, with p = |p| and
q = |G| being the magnitudes of the Jacobi momenta. Next, the motion of nucleon 1 with
respect to 2-3 c.m.s. subsystem is given in terms of the orbital momentum A coupled
with its spin % to give the total angular momentum of nucleon 1, . Further, j is coupled
with I to give the total angular momentum of the 3N system, J, with its projection M
on the quantization axis z. Finally, 7" and My are the total 3N isospin and its projection.
T arises from coupling of 2N isospin ¢ (= 0, 1) and the isospin % of the nucleon 1. The
|pga) basis is orthonormalized as

N o(q' — o(p —
(r'd'd[pgar) = g ,Q) (p ,p)
qq pp

S (4.48)

and satisfies conditions of antisymmetrization of 2-3 subsystem by constraint (—1)"s*t =
—1. Finally, its normalization is

> / dpp? / dgq’® Ipgar) (pgal =1 . (4.49)
“ 0 0

Our first step in solving the Faddeev equation (4.46|) is projecting it onto the partial-
wave states (4.55)) [2, [110]

<pq04|T|¢> :<pq04|tP’¢> +Z/dp/p/2/dq/q/22/dp// //Q/dq// 2 (4 50)
/ a// 0 ’

<pqa’t‘p/q > <p/q/a/’P’p// ! //> <p//q//Oé//‘GOT’¢> .
The t-matrix is diagonal in the quantum numbers of the nucleon 1

_0g—q)
qq

(pqalt(E)|p'q'a’) (5,\A'5ss/5tt'(5jj/5nf5JJ/5meJ,5TT/(5meT,

. 3¢°
. D
OZOZ (pp7 4m) ?

where ¢ denotes the NN ¢-matrix and @ contains the information about lsjt components.
Assuming that 7" = T" = 1/2, the two-nucleon t-matrix in the two-nucleon subsystem
takes the form [114] [115]

1 1 2 1
(1) 701 (¢3) 77 = bt [tz -0 (B4 351 | a2)

For the elastic scattering the isospin T = 5 components are negligible.
Among various expressions for (p'q'o/|P|pga) we use [2]

(4.51)

1

N o(pf —m)d(p—m /
('’ |Plpgar) = / dx (Z;,l, - ) (Z;,l - 2)Ga/a(q qx) (4.53)
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where

[ 1 1
m=A[@ + paPedr s T =0+ e (4.54)

and G (¢'qr) is a purely geometrical quantity (given explicitly in [2]).
The three-nucleon propagator in partial-wave basis is

1 6(¢—q)op—1p)

E-2 3¢ qq py/

{pga|Golp'q'e’) = Soa - (4.55)

Inserting decompositions (4.50), (4.51), (4.53), and (4.55) and reducing momenta
integrations with the help of §-functions one gets

Gl paﬂ-lv 3/4 P\ mgm
pqa|T|¢ Z/ 2 Z(sa”ad a’al’ q qo, T ) (l//Q) //d N

1

Qo p7 7T17 - (3/4)(]2)
Xy [ /2/dx =
a/ Oél/ 0

1 (maq'a”|T|¢)

Ga/a// ! ” ?
- (22 x)EHe—qQ/m—Q’Q/m— gqx/m 7
(4.56)
where
20N+ 1 1
Cmamy — 4+ C (Aif, OmN> C (11J,mgmy) , (4.57)
T

and a4 denotes the set of discrete quantum numbers for the 2N subsystem containing the
deuteron quantum numbers [ = 0,2, s=1, 7 =1, and t = 0.

In all my numerical 3N calculations, Eq. is solved numerically by generating its
Neumann series which is next summed up using the Padé method [2], 110]. The partial
wave basis comprising 3N states includes all states with the two-body subsystem total
angular momentum j < 5 and the total 3N angular momentum J < % This guarantees
the convergence of predictions with respect to the total angular momenta. The total
number of three-nucleon channels states |«) for given J amounts up to 142. The range
and size of grid points representing momenta p and ¢ are adjusted separately for each of
the potential models. I use grids of 32 p points in the range 0-40 fm ™' and 37 ¢ points
in the range 0-25 fm ™' both for the chiral SMS force and the OPE-Gaussian potential.

4.3.2 3N scattering observables

Here we give a very brief overview of 3N scattering observables, for more details see
Ref. [2]. The 3N scattering processes are characterized by a large set of spin-observables.
In addition to the polarized differential cross section and the vector analyzing powers
of nucleons, there are also vector and tensor analyzing powers of the deuteron. Further
information on the dynamics can be found in the spin transfer and the spin correlation
coefficients. In total, there are 55 different observables for elastic scattering. By solving
Egs. (4.56) and (4.43]) one find the elastic transition amplitude U. It is directly related to
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the physical elastic scattering amplitude taking into account various polarization states

My = —2m(2m) (¢ |U16) = —m(2n)? ($1U16:) (4.58)

where ¢, 7 denote the initial and final spin states, respectively. From M;; any elastic 3N
observable can be computed.
For example, the polarized differential cross section for the elastic Nd scattering in
the c.m.s. equals
do o o2
m - |Mm:im’demN (q 7QO)| ) (459)
where ¢ is the relative momentum of the incident nucleon with respect to the deuteron,
and ¢’ describes the same momentum in the final state. A more general representation
for the spin-averaged (unpolarized) differential cross section is given by

do
90 1= s 4.
o= Iy= STH (MM, (4.60)
with the trace taken over spin states.
In case of the deuteron breakup, the five-fold differential cross section in the c.m.s. is
given as
o (2m)'m?
dpdqdq 340

pa*| {do|Usl9) 7 - (4.61)

do

In practice is expressed as a function of laboratory scattering angles of two nucleons

' dpdgdg
and energy of one of the nucleons, Mﬁ? or the arc-length of the S—curve,mld;ﬁ,
Ref. [2]. In principle, this is also valid for 3N breakup polarization observables.

The same representation allows to define the spin observables [2]. The initial state

polarization of the nucleon leads to the definition of the nucleon analyzing powers

see

Tr(Mo, MT)

AdN) = 5

(4.62)
Using the common convention to choose the scattering plane as the x — z plane and
the y axis pointing to the direction k:m X kout, where k‘m and kout are the momenta of
the incoming and outgoing nucleons, respectively, results in a non-zero nucleon vector
analyzing power A,(N), while A,(N) = A,(N) = 0.

The deuteron vector and the tensor polarizations of the deuteron in the initial state
lead to the vector A; and the tensor A;;, deuteron analyzing powers, respectively,

Te(MP; M)
MMt

Tr(MP; M)

Ai: )
MMt

, Ajp = (4.63)
where P; is the initial polarization vector and Pjj is the initial polarization tensor. Parity
conservation reduces the number of observables. Conventionally, one introduces analyzing

powers iTy; and T;; defined as

. \/g 1 1 1
Ty = TAy , Too = ﬁAZZ , Top = —%sz , Top = —2\/5

When, both the incident nucleon and the deuteron are polarized in the initial state

(A — Ayy) . (4.64)
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various spin correlation coefficients C;;, and Cj;,; can be defined. In the case when one
particle is polarized in the initial state and one in the final state we deal with the spin
transfer coefficients K ,l; and K ,lf'.

All those above-mentioned quantities depend on the scattering angle and reaction en-
ergy. Extending the above definitions one can define the spin observables in the deuteron
breakup process for which the number of 3N observables is greater than for the elastic
scattering.
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Chapter 5

Theoretical uncertainties for the elastic
and inelastic Nd scattering observables

In this Chapter I present predictions obtained with the chiral SMS interaction employing
the regulator A = 450 MeV at different orders of the chiral expansion and with the
OPE-Gaussian potential for observables in the elastic neutron-deuteron (nd) scattering
at incoming neutron laboratory energies F,;, = 13,65,135 and 200 MeV. In order to
draw reliable conclusions based on the comparison of theoretical predictions and data,
an estimation of theoretical uncertainties is necessary. One type of such uncertainties are
statistical errors. I compare them with others, such as truncation errors based on the
EKM approach or on the Bayesian approach. In some of the following figures, theoretical
predictions are also compared with the proton-deuteron cross section data. In these
configurations small effects of the Coulomb force can be neglected. Significant effects
of the Coulomb force are visible only at lower energies and at forward and backward
scattering angles for the differential cross section [116].

5.1 Results for the elastic Nd scattering

[ start presenting my results with the differential cross section do/df) obtained with
the central values of the chiral N2LO, N*LO and N*LO™T (A = 450 MeV) SMS potential
parameters [9]. For the sake of comparison I also show in Figure predictions obtained
using the OPE-Gaussian [10] and the AV18 potentials [52]. At Ep, = 13 MeV, the
predictions based on the chiral SMS potentials practically do not differ from each other
and difference between them remains below 1% at all scattering angles. At Ej, =
65 MeV, the difference in predictions based on the chiral potentials N*LO and N2LO SMS
forces reaches 5.3%, but between N*LO SMS and OPE-Gaussian potentials is slightly
above 10% in the region around the minimum of the cross section. At Ej,;, = 135 MeV the
difference in predictions between N1LO SMS and OPE-Gaussian potentials in the same
region of angles reaches approximately 26%, between N*LO and N2LO SMS potentials
is approximately 15.4% at scattering angles 0., € [60°,100°]. At Ej;, = 200 MeV the
difference in predictions between N*LO and N2LO SMS potentials is 11.5%, but between
N4LO SMS and OPE-Gaussian potential amounts ~ 24% at the minimum of differential
cross section for both pairs of potentials. The predictions based on the OPE-Gaussian
force are in agreement with the predictions based on the AV18 potential. Only small
(~ 3.9% at Ejp = 13 MeV and =~ 3.5% at Ej,, = 200 MeV) differences are seen in the
minimum of the cross section. The discrepancy with data around the minimum of the
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cross section is due to neglecting 3N forces contributions at all presented here energies.
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Figure 5.1: The differential cross section do/dS2 for the elastic nd scattering process at
the incoming neutron laboratory energy (a) Ep, = 13 MeV, (b) Ep, = 65 MeV, (c)
Ei, = 135 MeV and (d) Epp, = 200 MeV as a function of the c.m. scattering angle
Oc.m.. The solid black line with diamonds, the solid blue line with triangles down, the
solid green line with open circles and the solid red line correspond to the central values of
the chiral N2LO, N*LO, N*LO* (A = 450 MeV) SMS, and the OPE-Gaussian potential
parameters, respectively, and the cyan line with open squares represents predictions based
on the AV18 force. The experimental data are in: (b) from Ref. [I17] (pd black pluses)
and [II8] (nd open orange circles), (c) from Ref. [I19] (dp blue open circles), Ref. [120]
(dp black open diamonds), Ref. [85] (dp cyan stars) and Ref. [121] (pd green triangles up)
and in (d) from Ref. [122] (pd black open squares, Ep, = 190 MeV), Ref. [123| (pd cyan
open squares, Fl,, = 198 MeV) and Ref. [124] (dp violet open circles, F,, = 181 MeV).
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Figure 5.2: The differential cross section do/dS2 for the elastic nd scattering process
at the incoming neutron laboratory energy (a) Epn, = 13 MeV, (b) Ep, = 65 MeV,
(¢) Erap = 135 MeV and (d) Ep, = 200 MeV as a function of the c.m. scattering angle
O..m.. The black, blue, green and red bands represent statistical uncertainties based on the
chiral N?LO, N*LO, N*LO™ (A = 450 MeV) SMS forces and the OPE-Gaussian potential,
respectively. The experimental data are in: (b) from Ref. [I17] (pd black pluses) and [1T8§]
(nd open orange circles), (c) from Ref. [I19] (dp blue open circles), Ref. [120] (dp black
open diamonds), Ref. [85] (dp cyan stars) and Ref. [121] (pd green triangles up) and in
(d) from Ref. [122] (pd black open squares, Ej,, = 190 MeV), Ref. [123] (pd cyan open
squares, Fi,p = 198 MeV) and Ref. [124] (dp violet open circles, Ej,, = 181 MeV). Note
that the statistical uncertainties are so small that the width of the bands cannot be seen
at the scale of the figure.

In Figure [5.2] I show estimation of statistical uncertainties for the elastic scattering
differential cross section data description obtained with the aforementioned chiral SMS
forces and the OPE-Gaussian potential. Those predictions are represented by bands
which cover a range of Aggy, estimator of the statistical uncertainty. At the lowest energy,
E, = 13 MeV, the maximum of the relative difference E] among predictions obtained
with the chiral potentials is small (= 1.2% around the minimum of the cross section
between the chiral N?LO and NYLO SMS results) and even smaller for other pairs of
chiral orders. The maximum of relative difference between the widths of the N4LO SMS
and the OPE-Gaussian bands of predictions at Ej,, = 13 MeV reaches 3.2% at scattering

6s% — 30%s% ¢s%|)), where the indices i and j correspond to the selected

potentials the predictions of which are compared.

|38k — 3] /(|5 k| + 3]
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angle 0.,, = 127.5°, while the statistical error of the N*LO results is ~ 2.5%. The
narrowness of bands clearly shows that at this energy the uncertainty of the nd elastic
cross section arising from the uncertainty of the NN potential parameters is very small for
all scattering angles. With increasing energy spreads of the different order of chiral NN
potential results become larger, however, the values of statistical uncertainties remain
small. At Ey,;, = 200 MeV there is a significant increase of distance between the N4LO
SMS predictions with respect to the OPE-Gaussian results up to 24% at 6., = 155°,
but statistical errors remain below 1% for both potentials at the same scattering angle.
The difference between the N2LO and the N*LO SMS predictions is 16% at the same

angle, but for example at 6., = 80° it amounts 25%.
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Figure 5.3: The nucleon vector analyzing power A, for the elastic nd scattering process
at the same energies as used in Figure [5.2] shown as a function of the c.m. scattering
angle 0., . For description of curves and bands see Figure The data are in: (a)
from Ref. [125] (nd blue pluses), (b) from Ref. [I18] (nd black pluses), Ref. [117] (pd
orange open circles), (c¢) from Ref. [126] (pd black open circles) and (d) Ref. [126] (pd
black open circles, Ej,, = 200 MeV), Ref. [122] (pd black open squares, Ej,, = 190 MeV),
Ref. [123] (pd cyan open squares, Ej,, = 198 MeV), Ref. [127] (pd black triangles up,
Elap = 197 MeV) and Ref. [128] (pd magenta triangles down, Fj,, = 200 MeV).

In Figure the neutron vector analyzing power A, is shown. Although the mag-
nitudes of the statistical uncertainties grow slightly with increasing scattering energy,
they remain small enough to conclude that they are negligible compared to the spread
of the predictions obtained using the different potentials. At Ep, = 13 MeV the maxi-
mum of relative difference between predictions based on the chiral N*LO SMS force (the
maximum of %A%% < 0.08%) and the ones obtained with the OPE-Gaussian potential
(the maximum of $Aggy < 0.06%) reaches a maximum of 7.56% and between the N?LO
and the N*LO is approximately 8% around the maximum of A,. The comparison of the

theoretical predictions with data reveals a big gap. Thus, the nature of the A,-puzzle
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remains unsolved at this energy. In the case of Ej,;, = 200 MeV the maximum spread
between the N*LO and the OPE-Gaussian predictions is 21% at 6., = 137.5°, while
the statistical error of the N*LO (OPE-Gaussian) is 0.52% (0.32%) at the same angle.
It has also to be noted that the dispersion between N*LO and N*LO™ is approximately
2% (=~ 2.6 at backward angles) at Ej,, = 13 MeV near the maximum magnitude of A,,
but at E = 200 MeV is quite big difference around 5.5% in the minimum of A, (at
Ocm. = 137.5).
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Figure 5.4: The deuteron vector analyzing power iT4; for the elastic nd scattering process
at the same energies as used in Figure|5.2|as a function of the c.m. scattering angle 6, ..
Description of curves and bands is as in Figure 5.2l The data are in: (b) Ref. [129]
(pd blue open circles), Ref. [130] (dp black x’s, Ep, = 130 MeV) and Ref. [I31] (dp
green open squares, Ei,, = 130 MeV), (c¢) from Ref. [126] (pd black open circles) and
(d) Ref. [126] (pd black open circles, El.p, = 200 MeV), Ref. [127] (pd black triangles up,
Elap = 197 MeV) and Ref. [7] (dp violet triangles up, ., = 186.6 MeV).

The behavior of statistical uncertainties for the deuteron vector analyzing power iT11,
presented in Figure[5.4] is very similar to that for A,. It is clearly seen that all potentials
give practically the same predictions, but small diverges from each other are observed
around the maximum at Fj,;, = 13 MeV. For example, the relative difference between
the N*LO and the OPE-Gaussian predictions reaches ~ 6.7% at the maximum of iTy;.
At E = 200 MeV there is a huge spread between all results, for example the N*LO band
differs from the OPE-Gaussian ones by factor two at 6., = 55° and at 0.,, = 145°,
while the corresponding static errors are not exceed even 0.5% for both potentials. The
same behavior is for relative differences between the N*LO and the N*LO™ results.

The deuteron analyzing powers Tag, T2 and Tay are presented in Figures [5.5]
and [5.7] respectively. At E,, = 135 and 200 MeV for Ty and Tss it is clearly seen that
predictions based on the OPE-Gaussian potential strongly deviate from results obtained
with the chiral SMS forces. As for Ty the chiral N2LO SMS predictions differ from
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remaining results. The resulting statistical uncertainties of the tensor analyzing powers
do not exceed even 1% and this is true for all energies and potentials.
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Figure 5.5: The deuteron tensor analyzing power Ty for the elastic nd scattering process
at the same energies as used in Figure [5.2] as a function of the c.m. scattering angle
fc.m.. Description of curves and bands is as in Figure 5.2} The data are in: (b) Ref. [130]
(dp black x’s, El,, = 130 MeV), Ref. [129] (dp blue open circles, Ej,, = 131 MeV), and
Ref. [I31] (green open squares, F;, = 130 MeV), (c¢) from Ref. [126] (pd black open
circles) and (d) Ref. [126] (pd black open circles, E,, = 200 MeV) and Ref. [7] (dp violet
triangles up, Fj,p = 186.6 MeV).

Now we turn to the description of the spin correlation coefficients. I have chosen
a several spin correlation coeflicients to demonstrate that predictions based on various
potentials differ strongly between each other, especially for high energies, see Figures[5.8|—
For some observables there are differences in predictions even for lower energies.
It should be noted that the spreads of the resulting statistical uncertainties for each
potential are still smaller than uncertainties of experimental results. This is similar to
results for the differential cross section and polarization observables discussed above.

In Figure the spin correlation coefficient C., is shown as an example for the case
when resulting statistical error is smaller than the dependence on interaction models both
at medium and high energies. All predictions are almost converged at Ej,;, = 13 MeV.
At Ep, = 65 MeV the OPE-Gaussian band deviates from remaining predictions, for
example, its maximum difference with the N*LO SMS predictions is 13% at 0., = 145°.
At higher energies, the N2LO order is not sufficient, the spread of its predictions is too
large when comparing the results obtained using other potentials, especially at 6., < 60°
for Fi,p, = 135 MeV and 0,.,, < 45° for Ej,;, = 200 MeV. The relative spread of the N4LO
and the N*LO* SMS results grows with energy, and while at lowest energy Ei,, = 13 MeV
it is negligible, at Fj,, = 200 MeV its size is noticeable. The statistical uncertainties
+Agsy < 0.5% for all potentials.
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Figure 5.6: The deuteron tensor analyzing power T for the elastic nd scattering process
at the same energies as used in Figure as a function of the c.m. scattering angle 6., .
Description of curves and bands is as in Figure The data are in: (b) Ref. [129] (dp
blue open circles, Ej,, = 131 MeV) and Ref. [131] (green open squares, Ej,, = 130 MeV),
(c) from Ref. [126] (pd black open circles) and (d) Ref. [126] (pd black open circles,
Elap = 200 MeV) and Ref. [7] (dp violet triangles up, ., = 186.6 MeV).

Next, I would like to give a brief description of predictions for spin transfer coefficients.
Four nucleon to nucleon spin transfer coefficients K2 (n), K}jl(n), KZ(n) and K%(n)
are shown in Figures — , respectively. Predictions for Ké/ (n), presented in
Figure [5.19 are more interesting than others. It is clearly seen how the OPE-Gaussian
results do not coincidence with the chiral SMS predictions at Fj,, = 135 (200) MeV. The
relative differences between the two predictions, the OPE-Gaussian and the N*LO SMS,
amount approximately 8.3% (16%) at 0., = 137.5°, but at the same time the statistical
errors of the OPE-Gaussian and the N*LO SMS are 0.24% and 0.27% (0.32% and 0.26%),
respectively.

Figures - demonstrate the neutron-deuteron vector spin transfer coefficients
KZ'(d),K?(d), and KY(d). Again, let us consider in detail one example, namely the
K fl (d). As in all previous examples there are the overall agreements between all bands
at Fl, = 13 and 65 MeV. At Ej,, = 135 (200) MeV a spread of the OPE-Gaussian
predictions with respect to N*LO SMS band increases to 14% (21%) around the minimum
and 35% (18%) at the maximum of K% (d). The statistical uncertainties of theoretical
predictions remain smaller than 0.5%. Using the N2LO SMS potential leads to predictions
not consistent with others results when describing the dependence of Kg'(d) at higher
energies.

Finally, the neutron-deuteron tensor spin transfer coefficients: vz K ﬂ’y
KV (d), KY#(d), and K;’fc' - Kyy'y'(d) are presented in Figures “ ﬁ Here the
uncertainties remain negligible at all energies. For example, the statistical errors of the
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Figure 5.7: The deuteron tensor analyzing power Ty, for the elastic nd scattering process
at the same energies as used in Figure [5.2] as a function of the c.m. scattering angle
Oc.m.. Description of curves and bands is as in Figure . The data are in: (b) Ref. [130]
(dp black x’s, Ej.p = 130 MeV), Ref. [129] (dp blue open circles, Ej,;, = 131 MeV), and
Ref. [I31] (green open squares, Ep, = 130 MeV), (c) from Ref. [126] (pd black open
circles) and (d) Ref. [126] (pd black open circles, Ey, = 200 MeV) and Ref. [7] (dp violet
triangles up, Fj,, = 186.6 MeV).

magnitude of these observables do not exceed 0.5% (0.7% in the case of K" — K¥'¥'(d)).
But on the other hand, there are rather strong discrepancies in the results between pre-
dictions based on the OPE-Gaussian potential and the chiral SMS forces predictions,
especially at high energies. For instance, at Fj,, = 135 MeV (200 MeV) and 6., = 135°
the relative difference for K*'¥'(d) between the two predictions (the OPE-Gaussian and
the N*LO) reaches 70% (93%). Similarly, for K¥*'(d) the relative difference between pre-
dictions amounts = 64% (52%) at El., = 135 MeV (Ey, = 200 MeV) and 6., = 135°.
There is also a large relative difference between the N°LO SMS and the remaining chiral
predictions. Such discrepancies in the results for all 3N observables may be due to the
fact that chiral potentials use different LEC values and at higher energies observables
become sensitive to new structures in potential arising in higher orders.
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Figure 5.8: The spin correlation coefficient C,, for the elastic nd scattering process at
the same energies as used in Figure for the elastic nd scattering process as a function
of the c.m. scattering angle .., . Description of curves and bands is as in Figure [5.2]
The data are in: (c) from Ref. [126] (pd black open circles) and (d) Ref. [126] (pd black
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Figure 5.9: The spin correlation coefficient C,, for the elastic nd scattering process at
the same energies as used in Figure for the elastic nd scattering process as a function
of the c.m. scattering angle 6., . Description of curves and bands is as in Figure [5.2]

The data are in: (c) from Ref. [126] (pd black open circles).
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Figure 5.10: The spin correlation coefficient C,, for the elastic nd scattering process at
the same energies as used in Figure [5.2] as a function of the c.m. scattering angle 6. ., .
Description of curves and bands is as in Figure 5.2} The data are in: (c) from Ref. [126]
(pd black open circles), and Ref. [127] (pd black triangle up, Ey, = 197 MeV) and (d)
Ref. [126] (pd black open circles).
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Figure 5.11: The spin correlation coefficient C',, for the elastic nd scattering process at

the same energies as used in Figure [5.2] as a function of the c.m. scattering angle 6., .
Description of curves and bands is as in Figure 5.2} The data are in: (c) from Ref. [126]
(pd black open circles) and (d) Ref. [126] (pd black open circles).
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Figure 5.12: The spin correlation coefficient C,, for the elastic nd scattering process at
the same energies as used in Figure [5.2] as a function of the c.m. scattering angle 6. ., .
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Figure 5.13: The spin correlation coefficient Cy,, , for the elastic nd scattering process at
the same energies as used in Figure [5.2] as a function of the c.m. scattering angle 6., .
Description of curves and bands is as in Figure 5.2} The data are in: (c) from Ref. [126]
(pd black open circles) and (d) Ref. [126] (pd black open circles).
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Figure 5.14: The spin correlation coefficient C, , for the elastic nd scattering process at
the same energies as used in Figure [5.2] as a function of the c.m. scattering angle 6., .
Description of curves and bands is as in Figure 5.2} The data are in: (c) from Ref. [126]
(pd black open circles) and (d) Ref. [126] (pd black open circles).
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Figure 5.15: The spin correlation coefficient C, ., for the elastic nd scattering process at
the same energies as used in Figure [5.2] as a function of the c.m. scattering angle 6., .
Description of curves and bands is as in Figure 5.2} The data are in: (c) from Ref. [126]
(pd black open circles) and (d) Ref. [126] (pd black open circles).
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Figure 5.16: The spin correlation coefficient C', , for the elastic nd scattering process at
the same energies as used in Figure [5.2] as a function of the c.m. scattering angle 6. ., .
Description of curves and bands is as in Figure 5.2} The data are in: (c) from Ref. [126]
(pd black open circles) and (d) Ref. [126] (pd black open circles).

F T T I T T T T T T T T T T :: T T I T T T T T T T T T T - 1
02E @ i o Hos
OF + S0.6
0.02 F -+ =04
-0.04 - =+ o2
006 =+ 50
O -0.08 =3 =02
; 5 E E:— =-0.4
O = o -2
1.5 —+ E
= = 415
' E 2
05F = 405
0 —esee + EN
E = —-0.5
0.5 —+ =
Eoov b b b b by ___I PN T W AT SR A AR N |_— -1
0 30 60 90 120 150 0 30 60 90 120 150 180
904m4 [deg] Gcm [deg]

Figure 5.17: The spin correlation coefficient C,,, — C,,, for the elastic nd scattering
process at the same energies as used in Figure [5.2] as a function of the c.m. scattering
angle 0., . Description of curves and bands is as in Figure The data are in: (c) from
Ref. [126] (pd black open circles) and (d) Ref. [126] (pd black open circles).
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Figure 5.18: The nucleon to nucleon spin transfer coefficient K%' (n) for the elastic nd
scattering process at the same energies as used in Figure as a function of the c.m.
scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.19: The nucleon to nucleon spin transfer coefficient Kg/ (n) for the elastic nd
scattering process at the same energies as used in Figure [5.2] as a function of the c.m.
scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.20: The nucleon to nucleon spin transfer coefficient KZ'(n) for the elastic nd
scattering process at the same energies as used in Figure as a function of the c.m.

scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.21: The nucleon to nucleon spin transfer coefficient K7Z'(n) for the elastic nd
scattering process at the same energies as used in Figure [5.2] as a function of the c.m.

scattering angle 0., . Description of curves and bands is as in Figure .

93



0 T T T T T T I T T I T T T T — O
- () . E
—02_— —_: _:—0]
- + 3-02
-04 — - 3
- = =-03
-0.6 - —-+ 304
-08:— —:z_ _2'0'5
-~ + = -0.6
= - i 3
T e e e L LA B e o B S o A e o= UK
0.4 = Ho0.6
02 + §04
- = 5 0.2
0 +
C = —0
-0.2 | - =
= T —-0.2
0.4 - =+ E
= + —=-04
- I Il I_:I Il I Il Il I Il Il I Il Il I Il Il I Il I:
0 30 60 90 120 150 0 30 60 90 120 150 180

Gc'm' [deg] Gc'm' [deg]

Figure 5.22: The nucleon to nucleon spin transfer coefficient K*'(n) for the elastic nd
scattering process at the same energies as used in Figure as a function of the c.m.
scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.23: The neutron-deuteron vector spin transfer coefficient K% (d) for the elastic
nd scattering process at the same energies as used in Figure [5.2| as a function of the c.m.
scattering angle .., . Description of curves and bands is as in Figure .
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Figure 5.24: The neutron-deuteron vector spin transfer coefficient K% (d) for the elastic
nd scattering process at the same energies as used in Figure [5.2| as a function of the c.m.
scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.25: The neutron-deuteron vector spin transfer coefficient ng’(d) for the elastic
nd scattering process at the same energies as used in Figure [5.2| as a function of the c.m.
scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.26: The neutron-deuteron tensor spin transfer coefficient K% (d) for the elastic
nd scattering process at the same energies as used in Figure [5.2| as a function of the c.m.
scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.27: The neutron-deuteron tensor spin transfer coefficient K%' (d) for the elastic
nd scattering process as a function of the c.m. scattering angle 6., . Description of
curves and bands is as in Figure 5.2}
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Figure 5.28: The neutron-deuteron tensor spin transfer coefficient K% (d) for the elastic
nd scattering process at the same energies as used in Figure [5.2| as a function of the c.m.
scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.29: The neutron-deuteron tensor spin transfer coefficient K¥* (d) for the elastic
nd scattering process at the same energies as used in Figure [5.2| as a function of the c.m.
scattering angle 0., . Description of curves and bands is as in Figure .
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Figure 5.30: The neutron-deuteron tensor spin transfer coefficient K;”/x/ — Kgly/(d) for
the elastic nd scattering process at the same energies as used in Figure as a function
of the c.m. scattering angle 6., . Description of curves and bands is as in Figure .

It is interesting to compare the statistical errors with other kinds of theoretical un-
certainties. Firstly, I would like to show one example which demonstrate the truncation
errors obtained by using the method from reference [13]. In Figure a comparison
of the statistical and truncation errors for the deuteron vector analyzing power iTy; is
shown. The N*LO SMS force with A = 450 MeV is used. For the sake of clarity, for
the truncation errors we show only, with the cyan curves, borders of the corresponding
band. The relative difference between the widths of two bands at Ej,, = 65 MeV reaches
a few percent at scattering angle 6., = 90°. However, with increasing energy there is a
significant increase in the magnitude of the truncation error which leads to an increase of
the relative difference between the widths of two bands. For instance, at Ej,, = 135 MeV
and 0., = 90°, that difference approaches about 84% (with 6®)(iTy;) > %Aﬁg%)7 but
already at Ej,, = 200 MeV it amounts up to 92%. Last but not least, I have to note
that the ratios of the magnitude of the statistical uncertainties to the magnitude of the
truncation error, that is %Aﬁg% /o(X )(5), for the polarization observables are for most of
the scattering angles much bigger than the same ratios but for the cross section. This is
due to a bigger sensitivity of polarization observables to the specific potential parameters
of the chiral interaction used.
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Figure 5.31: The deuteron vector analyzing power iTq; for the elastic nd scattering at
the incoming neutron laboratory energy (a) Ep, = 65 MeV, (b) Ep, = 135 MeV and
(¢) B, = 200 MeV as a function of the c.m. scattering angle 0.,,. The blue solid
band represents the statistical uncertainties based on the chiral N'LO (A = 450 MeV)
potential and the cyan lines represent the borders of the band for the truncation error
for the same potential estimated using Eq. . The experimental data are the same as

in Figure [5.4]

E [MeV] | Ocm. [deg] | iT11(So) | | iT11(So) - iTH™| | [1TH™ - iT11(So)| | 2Aes | 0(iT11)®
65 30 0.115234 0.000644 0.000493 0.000569 | 0.000425
75 -0.117815 0.000820 0.000577 0.000699 | 0.001685
120 -0.342291 0.002194 0.001620 0.001911 | 0.002680
165 -0.089323 0.000486 0.000313 0.000399 | 0.000599
135 30 0.270409 0.001503 0.001204 0.001354 | 0.004570
75 -0.233802 0.001052 0.001486 0.001269 | 0.009550
120 -0.326824 0.003196 0.001554 0.002375 | 0.015205
165 0.155717 0.001594 0.001174 0.001385 | 0.003405
200 30 0.367730 0.000706 0.001307 0.001007 | 0.012490
75 -0.307313 0.002202 0.003750 0.002976 | 0.026585
120 -0.286319 0.003595 0.002643 0.003119 | 0.028870
165 0.175372 0.003484 0.002954 0.003219 | 0.007540

Table 5.1: The deuteron analyzing power iT;0btained, for the given energy of incoming
neutron Fi,,, and at given scattering angle 6., , for the expectation values of the chi-
ral SMS NLO potential parameters (denoted as set Sp), and its statistical %Aﬁg% and

min max

truncation 6 errors. In addition the borders of iTy; for 34 sets (iT™™ and iT™*) are

ax _ :'min

3 m.

Table [5.1] provides more details on the statistical errors and truncation uncertainties
for the deuteron vector analyzing power iT}; shown in Figure [5.31] Here, in addition to
the predictions for iT;; obtained using the SMS N*LO potential, the statistical (%A(;g%)
and truncation (§(X)®)) errors are presented. Again, one can observe a rapid decrease of
the (S(A;% with energy change. The predictions, based on the genuine set of the potential
parameters Sy, shown in the third column of Table 5.1] does not need to be in the centre
of predictions obtained with various sets of the potential parameters. Hence, in the 4th
and the 5th columns of Table there are the distances between the predictions from the

3rd column and minimal and maximal predictions among predictions based on 34 sets
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of potential parameters taking into account when calculating Aggy. Indeed the different
magnitudes of these distances, at given energy and scattering angle, points to a nonlinear
behaviour of 3N observables with the potential parameters.
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Figure 5.32: The differential cross section do/dS) for the elastic nd scattering process
at the incoming neutron laboratory energy (a) Fi.p = 13 MeV, (b) El, = 65 MeV, (c)
Ei, = 135 MeV and (d) Epp, = 200 MeV as a function of the c.m. scattering angle
Oc.m.. The black and blue bands represent the statistical uncertainty obtained with the
chiral N2LO and NYLO (A = 450 MeV) SMS potentials, respectively. The light-green
and orange bands show 68% DoB intervals from the Bayesian model C§% ,, based on the
chiral N?2LO and N4LO (A = 450 MeV) SMS potentials, respectively. The experimental
data are the same as in Figure [5.2]

The Bayesian approach is a more sophisticated method which allows one to draw
more reliable conclusions about the convergence and to quantify truncation errors in
perturbative calculations. I would like to compare now the statistical uncertainties with
the truncation errors estimated within the Bayesian procedure already described in Sec-
tion to study truncation errors in 3N scattering.

In the following I compare, for several selected observables, predictions based on the
chiral N?LO and N*LO SMS potentials along with the truncation error (more precisely
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the 68% DoB intervals) and the statistical uncertainty obtained with the same forces.
For example, in Figures - the differential cross section, the neutron vector, A,,
and the deuteron vector, iTy;, analyzing powers in elastic neutron-deuteron scattering at
the laboratory energies Ey,, = 13,65,135 and 200 MeV are shown. For the differential
cross section the magnitude of the statistical uncertainty is bigger or comparable to
the magnitude of the truncation errors at Ej,, = 13 MeV, but with increasing energy
the width of 68% DoB interval at N’LO from the C8% , Bayesian model exceeds the
statistical uncertainty at small and big scattering angles and at the minimum of the
cross section. At higher energies the statistical uncertainties are smaller compared to the
truncation ones. Thus we observe that at those energies the truncation errors become
a dominant source of the theoretical uncertainty. The situation changes extremely with
increasing chiral order when the width of trunction error drops to the size of statistical
uncertainty even at higher energies. The relative difference between 68% DoB interval
and the statistical error for N*LO SMS predictions reaches no more than 1% at Fj, =
200 MeV.

For A, the truncation error at N°LO appears much bigger than statistical uncertainty
at all energies. This domination appears just at specific ranges of scattering angles for
two lower energies and at higher energies the truncation errors exceed the statistical ones
for all scattering angles. The magnitude of the truncation errors is, as expected, much
smaller at N*LO than at N?LO and the magnitude of the statistical uncertainties remains
similar at these two orders of the chiral NN potential and at the same reaction energies.
The magnitude of the relative difference between the statistical uncertainty and 68% DoB
interval for A, is < 3% for the SMS N“LO force at higher energies. Examples of other
observables are shown in Figures[5.34]-[5.37] The general picture arising from comparison
of the statistical error and 68 % DoB interval does not change dramatically. We observe
that at N*LO the truncation errors are significantly bigger compared to the statistical
uncertainty. This situation will likely change after applying higher orders contributions
to the chiral force what should decrease the truncation error. The magnitude of the
truncation errors is, as it should be, much smaller at N*LO than at N?LO and the
magnitude of the statistical uncertainties remains similar at the both orders of the chiral
expansion and at the same reaction energy.

In Figure [5.38], I show one example of estimated DoB intervals for truncation errors
of the elastic differential cross section for more orders of chiral expansion. Clearly, at
all energies truncation error obtained with the Bayesian approach becomes smaller with
increasing order of the chiral expansion. Only at low energies and at N*LO truncation
errors is smaller than statistical uncertainty. The same picture is also valid for other
investigated 3N observables presented in Appendix B.

61



20 40 60 80 100120140160 20 40 60 80 100120140160
Oc.m. [deg] Oc.m. [deg]

Figure 5.33: The neutron vector analyzing power A, and the deuteron vector analyzing
power iT; for the elastic nd scattering process at the incoming neutron laboratory energy
(a, e) Elab =13 Me\/, (b, f) Elab = 65 MeV, (C, g) Elab = 135 MeV and (d, h) Elab =
200 MeV as a function of the c.m. scattering angle 0., . Bands are as in Figure [5.32
The experimental data are the same as in Figures and , respectively.

62



; 1-0.7
20 40 60 80 100120140160 20 40 60 80 100120140160
0;.m. [deg] 0;.m. [deg]

0.6t

Figure 5.34: The deuteron tensor analyzing powers Tgy and Ty for the elastic nd scat-
tering process at the incoming neutron laboratory energy (a, e) Ej, = 13 MeV, (b, f)
Elan = 65 MeV, (¢, g) Elap = 135 MeV and (d, h) Ej,, = 200 MeV as a function of the
c.m. scattering angle 0., . Bands are as in Figure [5.32] The experimental data are the

same as in Figures and respectively.
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Figure 5.35: The deuteron tensor analyzing powers Ty, and the spin correlation coefficient
C,y for the elastic nd scattering process at the incoming neutron laboratory energy (a, e)

Elab =13 Me\/, (b, f) Elab =65 MeV, (C, g) Elab = 135 MeV and (d, h) Elab = 200 MeV
as a function of the c.m. scattering angle 6.,,. Bands are as in Figure [5.32 The
experimental data are the same as in Figures and .10} respectively.
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Figure 5.36: The nucleon to nucleon spin K?y/ (n) and the neutron-deuteron vector spin

K g’(d) transfer coefficients for the elastic nd scattering process at the incoming neutron
laboratory energy (a, €) Ej., = 13 MeV, (b, f) Ep, = 65 MeV, (¢, g) Enp = 135 MeV
and (d, h) Ej,, = 200 MeV as a function of the c.m. scattering angle 6., . Bands are as

in Figure [5.32
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Figure 5.37: The spin correlation coefficient C,,, and the neutron-deuteron tensor spin
transfer coeflicient K;"m' — K;/y' (d) for the elastic nd scattering process at the incoming
neutron laboratory energy (a, €) Ej, = 13 MeV, (b, f) Ej, = 65 MeV, (¢, g) Ep, =
135 MeV and (d, h) Ej,, = 200 MeV as a function of the c.m. scattering angle 0., .
Bands are as in Figure [5.32} The experimental data are the same as in Figure [5.15]
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Figure 5.38: The differential cross section do/dS) for the elastic nd scattering process
at the incoming neutron laboratory energy (a) Epp, = 13 MeV, (b) Ep, = 65 MeV, (c)
El, = 135 MeV and (d) Epp, = 200 MeV as a function of the c.m. scattering angle
Ocm.. The light-shaded brown and green, purple and orange bands depict 68% DoB
intervals from the Bayesian model C§% ,, based on the chiral NLO, N2LO, N*LO and
N*LO (A = 450 MeV) SMS potentials, respectively.

Last but not least, it is also interesting to consider the residual cutoff dependence
of 3N observables. In Figures — [b.41] T present predictions for a few observables
obtained with the central values of parameters of the N*LOT SMS force for four values of
the regulator A = 400, 450, 500, and 550 MeV. As shown in Figure[5.39] the differential
cross section do /dS is very stable with respect to the cutoff A, i.e., the resulting spread of
predictions is barely visible for all energies. In the case of the deuteron vector analyzing
power iTq; (see Figure the picture is similar, but some sensitivity to cutoff at higher
energies and medium angles is seen. Even bigger regulator dependence is seen for the
spin correlation coefficient C, in Figure [5.41] It increases with energy, and in particular
the predictions for A = 400 MeV separates at most scattering angles. These three figures
reveal typical pattern: the cross section predictions are practically independent on used
value of the regulator parameter, but the role of the regulator grows with the complexity
of spin observable. Of course, it is interesting to compare magnitudes of uncertainty
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related to the regulator with the statistical uncertainty. Thus, for the N*LO* SMS force,
I computed the ratios of the magnitude of the cutoff dependences and the statistical
uncertainties (at A = 450 MeV) to the magnitude of predictions at A = 450 MeV defined

as B, = 1 |maxdXa}omin{ X} | o Bl = 3 Rosy, ‘, respectively. The predictions X;, with

eg = 3 X X

i € {1,2,3,4}, are results obtained with the cutoff parameter A = 400,450,500 and
550 MeV, respectively. In the case of the differential cross section ratios Eyes (Estat) are
at E, = 65 MeV 0.009 (0.004) at 6., = 60°, and 0.02 (0.005) at 0.,, = 130°. For
Elap, = 200 MeV they amount 0.01 (0.008) at 6., = 60°, and 0.02 (0.01) at 6., = 130°.
The same ratios for iTy; are 0.05 (0.33) at 6., = 60°, and 0.03 (0.07) at 0.,, = 105°
for Fj, = 65 MeV and 0.07 (0.002) at 6., = 105°, and 0.07 (0.009) at 6.,, = 155°
for Ep, = 200 MeV. In the case of C,, the ratios are 0.02 (0.28) at 0.,, = 40°, 0.06
(0.02) at 0., = 145° for Ey,, = 65 MeV, and 0.08 (0.02) at 6., = 40°, and 0.16 (0.01)
at 0., = 160° for Ej;, = 200 MeV. Analyzing the obtained values, we come to the
conclusion that in most cases the statistical uncertainty obtained with the chiral N*LO™
SMS force is smaller than the error related to cutoff dependence. However, the numbers
above are biased by the choice of scattering angles, which has been chosen partly as
angles for which the cutoff dependence is especially big. For many other angles, and not
shown here observables, regulator dependence remains small and comparable in size to
statistical errors.
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Figure 5.39: The differential cross section do/dS) for the elastic nd scattering process
at the same energies as used in Figure [5.38 as a function of the c.m. scattering angle
Ocm.. The solid maroon line with squares, the solid green line with open circles, the solid
orange line and the solid black line with diamonds show predictions of the chiral N*LO*
SMS force using the cutoff parameters A = 400, 450, 500, and 550 MeV, respectively.
The experimental data are the same as in Figure 5.2}
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Figure 5.40: Same as in Figure but for the deuteron vector analyzing power iTy;.
The experimental data are the same as in Figure [5.4]
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Figure 5.41: Same as in Figure but for the spin correlation coefficient C',,. The
experimental data are the same as in Figure [5.12|
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Figure 5.42: The differential cross section do/dS) for the elastic nd scattering process
at the same energies as used in Figure [5.38 as a function of the c.m. scattering angle
Ocm.. The green and violet bands represent statistical uncertainties based on the chiral
N4LO* SMS force using the cutoff parameters A = 450 and 550 MeV, respectively. The
experimental data are the same as in Figure
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Figure 5.43: Same as in Figure but for the deuteron vector analyzing power iTy;.
The experimental data are the same as in Figure
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experimental data are the same as in Figure [5.12}

Finally, in Figures — I compare the statistical errors computed using the
chiral N4ALO+ SMS force with two values A = 450 MeV and A = 550 MeV, again for the
differential cross section do/dS), the deuteron vector analyzing power iTy; and the spin
correlation coefficient C',,. As can be seen, in all cases the two bands corresponding to
the statistical uncertainty have similar widths at given scattering angle. We may con-
clude, that used regulator value has no significant effect to the magnitude of statistical
uncertainty, however, the uncertainty obtained with A = 450 MeV is usually slightly

smaller than this for A = 550 MeV.

To summarize shortly this part of my thesis, I conclude that:

All theoretical errors for higher orders

than experimental ones.

of chiral force and the OPE-Gaussian po-
tential are small (very small below about 100 MeV) and, in general, remain smaller

The statistical uncertainty is usually smaller than the truncation errors.

The magnitudes of statistical uncertainties obtained with the chiral N*LO SMS

force and the OPE-Gaussian potential are found to be similar.

The magnitude of statistical uncertainty is smaller than the uncertainty of predic-

tions induced by different values of the cutoff parameter.

We observe the same picture for the differential cross section and for the polarization

observables.
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5.2 Results for the deuteron breakup reaction

In the case of the neutron induced deuteron breakup reaction a few kinematical config-
urations were selected to exemplify only the statistical uncertainties for observables in
this process.
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Figure 5.45: The five-fold cross section 00505 for the d(n,niny)p breakup reaction at
the incoming nucleon laboratory kinetic energy Fi.,= 65 MeV for the following directions
of momenta of outgoing neutrons: (a) 6; = 30.5°, 6, = 59.5° ¢15 = 180° (QFS configu-
ration) and (b) 0; = 6y = 54.0°, 12 = 120° (SST configuration). The orange, green and
violet bands represent statistical uncertainties obtained with the OPE-Gaussian force,
the chiral N*LO and N*LO+ (A = 450 MeV), respectively. The experimental data are
from Ref. [132] for (a) and from Ref. [133] for (b).
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Figure 5.46: The neutron vector analyzing power A,(n) for the d(n,niny)p breakup
reaction at the incoming nucleon laboratory kinetic energy Fj.,= 65 MeV for the following
directions of momenta of outgoing neutrons: (a) ¢; = 30.5° 0y = 59.5°, 15 = 180° and
(b) 01 = 0y = 54.0°, ¢15 = 120°. Curves and bands are as in Figure m Data are from
Ref. [132).

Acting in the same way as for elastic nd scattering, the theoretical statistical un-
certainties of 3N observables due to the uncertainty of the parameters of the SMS NN
potential are estimated. Figure [5.45] shows these uncertainties for the nd breakup cross
section, obtained using the chiral SMS potential with A = 450 MeV at two orders of
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Figure 5.47: (color online) (a) The five-fold differential cross section m for the
directions of momenta of outgoing neutrons 0; = 45.0°, 0 = 35.0°, 1o = 180° and (b) the
neutron vector analyzing power for the d(n, nins)p breakup reaction for ; = 52.0°, 0, =
45.0°, @12 = 180° at the incoming nucleon laboratory kinetic energy FEi,, = 200 MeV.

Curves and bands are as in Figure W The experimental data are for (a) from Ref. [134].

chiral expansion, N*LO and N*LO™*, and compares them with the results from the OPE-
Gaussian interaction. The magnitudes of statistical uncertainties for the cross section
reach their maximum approximately at S = 25 MeV for the quasi-free scattering (QFS)
configuration in Figure [5.45|(a). Predictions obtained with the chiral N*LO and N*LO*
potentials (at A = 450 MeV) slightly differ one each other but the OPE-Gaussian force
based results are clearly separated from the chiral predictions. For the SSI configuration
(Figure [5.45|(b)) the predictions obtained by the same potentials overlap each other.

In Figures[5.46{a) and [5.46|(b) I show examples of the neutron vector analyzing power
for the QFS and SST configurations at Ey,;, = 65 MeV, respectively. Here the statistical
uncertainties remain negligible for both configurations. The differences between predic-
tions based on the OPE-Gaussian force and the chiral potentials at N*LO and N*LO*
amounts up to 7% as seen in the maximum of the A,(n) for the SST configuration. Fig-
ure [5.47) exemplifies that at higher energy, E.;, = 200 MeV the statistical uncertainties
remain small. It is also interesting to note, that for the breakup process there exist kine-
matical configurations for which a clear difference between chiral predictions at N*LO and
N*LOT is observed. It is shown in Figure [5.47|(b), where the calculations of the nucleon
analyzing power around S = 100 MeV leads to nearly 14% difference between predic-
tions at these two orders of the chiral expansion. Such configurations and observables are
interesting in context of studying higher order contributions to the chiral forces. Thus,
concluding my findings for inelastic Nd scattering I find that statistical errors remain
still small in the deuteron breakup process at the considered kinematical configurations
independently from the employed NN force model.

73



Chapter 6

Correlations among 2N and 3N
observables and potential parameters

6.1 Correlations among two-nucleon observables

Before proceeding to the results on the systematic analysis of the correlation coefficients
in 2N and 3N systems, I would like to point the reader’s attention to a few points. When
fixing potential parameters, an appropriate set of experimental results should be used.
Traditionally, all available 2N data (the deuteron binding energy, the np scattering cross
section and numerous polarization observables) are taken into account. Such a choice
yields precise values of free parameters but, in turn, models fixed in that way have only
a moderate predictive power in the two-body system restricted to other observables,
energies and angular ranges. In addition, if correlated observables are used during the
fixing procedure, the obtained values of parameters can be biased. The sensitivity of
a given observable to the potential parameters is another important question. Clearly
using the observables which are not sensitive to the given potential parameter does not
allow one to precisely fix the value of that parameter. Such a doubtful fixing procedure
leads to questionable predictions of the considered potential model.

The JISP16 potential [142] serves as a good example. This potential was fitted to some
bound and excited states of light nuclei up to 0. It delivers a reasonable description of
the nuclear states [143] and has been even used to predict for the first time the existence
of 9F nucleus [144]. However, our application of this force to Nd elastic scattering at
low energies [145] revealed that parameters responsible for p-waves in this interaction
are wrong as the JIPS16 is not able to describe the nucleon analyzing power A, in the
Nd elastic scattering process. This observable is known to be very sensitive to the p-
wave components of the NN interaction. The reason why the JISP16 treats the p-waves
incorrectly is the fact that the observables taken into account during the fitting procedure
for this force are not sensitive enough to the NN interaction in this partial wave. Thus the
JISP16 model requires refitting to other observables, more sensitive to the interaction in
the p-waves. This example shows that knowledge of the sensitivity of specific observables
to potential parameters acting in given partial waves can bring valuable information for
setting the potential parameters. Of course, one has to be aware that the sensitivity of
various observables to the same potential parameter makes these observables correlated.
Having separate, complete information about the correlations among the observables
themselves and between observables and potential parameters will allow us to better
understand the nature of the (potentially) observed correlation. It is also well known
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Figure 6.1: The differential np elastic scattering cross section do/dS2 [mb sr~!] at the
incoming neutron laboratory energy (a) En, = 10 MeV, (b) En, = 30 MeV, (c)
Elan = 65 MeV and (d) Ejp = 135 MeV as a function of the c.m. scattering angle
Oc.m.- The orange diamonds, green triangles up, red triangles down, open cyan circles,
and blue circles represent results obtained with the central values of the chiral N2LO,
N3LO, N1LO, N*LO™ (A = 450 MeV) SMS and OPE-Gaussian potential parameters, re-
spectively, and the brown squares show predictions based on the CD-Bonn potential [53].
The experimental data are in: (a) from Ref. [135] (np black pluses), (b) from Ref. [136]
(np black pluses, Ep, = 29.90 MeV) and in (c) from Ref. [I37] (np black pluses).

that some observables are trivially correlated by fundamental symmetries, such as time
reversal symmetry, for example, nucleon-nucleon analyzing power is related to the induced
polarization of nucleons observed in the final state [146].

In Subsection [4.2.2] a brief description of our method to calculate the elastic 2N
scattering observables is presented. The computation of the 2N scattering observables
requires calculation of the transition amplitude between initial and final 2N states. To
this end the Lippmann-Schwinger equation is solved for each of the investigated models
of NN interaction and all sets of parameter values.

Before turning to correlation coefficients, in Figures[6.1]—[6.8 I demonstrate our results
for the set of eight mp observables as a function of the c.m. scattering angle at four
representative incident neutron energies: FE,;, = 10,30,65 and 135 MeV. These results
base on the central values of potential parameters of the chiral N2LO, N*LO, N*LO*
SMS (with the regulator parameter A = 450 MeV), the OPE-Gaussian and the CD-Bonn
potentials. In general, various potentials lead to similar predictions, and only for a few
observables, there is a visible spread of predictions at lower and higher energies. This
agreement is not surprising as all potentials deliver a very good description of the np
phase shifts.
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Figure 6.2: The polarization P in np scattering at the incoming neutron laboratory energy
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Figure [6.1}

In the cases of the OPE-Gaussian and the chiral potentials, we are able to estimate
a correlation coefficients between observables (see Chapter [3.2)). This is demonstrated in
Figures - We use the same 50 sets of potential parameters as in Chapter [3]
but we also add 50 more new sets of parameters for testing proposes. In following the
corresponding correlation coefficients are denoted by 759, 7%, (new), and their association
r100, Tespectively.

Figure[6.9 demonstrates the scatter plots for pairs of observables: the differential cross
section do/d§) and the depolarization R and for do/df2 and the asymmetry A’, at two
nucleon laboratory energies Fj,;, = 10 and 135 MeV, and at the c.m. scattering angles
Oc.n. = 50° and 150°. One can see strong positive correlation at E,, = 10 MeV for
both scattering angles, and both pairs of observables, i.e., for (do/d), R) r5o = 0.95 and
r100 = 0.93 at 0., = 50°, r5o = 0.82 and 7199 = 0.80 at 6., = 150°, and for (do/d2, A’)
T'sop = 0.88 and 100 = 0.87 at Hc‘m‘ = 5007 T'sop = 0.83 and 100 = 0.78 at Hc‘m‘ = 150°.
At the highest of considered energies Ey,;, = 135 MeV, the correlation coefficients are
much smaller r50 = 0.29 and ryp9 = 0.37 at 0., = 50°, and at 6.,, = 150° a weak
anticorrelation is visible, e.g. r50 = —0.40 and 7199 = —0.44 for (do/dQ2, R) pair, and
rso = 0.24 and 7190 = 0.27 at 6., = 50°, r50 = —0.35 and r1g9 = —0.41 at 0., = 150°
for (do/dQ2, A") pair. While a small (around 5%) difference between r5y and 7109 is seen,
the qualitative picture (also seen in figures) remains unchanged with the increasing size
of a sample.
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Figure 6.9: The scatter plots for (do/dS), A’) in np scattering at the c.m. scattering angle
Ocm. = 50° (left) and 6., = 150° (right) and at the incoming neutron laboratory energy
Elan = 10 MeV (a, b) and 135 MeV (¢, d) based on 50 sets (the black stars) and 100
sets (old 50 + new 50) (the open red squares) of potential parameters of the chiral N*LO
SMS (A = 450 MeV) potential.

As one more test of my method, in Figures[6.10] - [6.11] I show again the scatter plots
for (do/d2, R) and (P, A) calculated with two 50 sampled sets of potential parameters
of the chiral SMS force at N*LO chiral order. As is seen from Figure [6.10] there are no
any unexpected gaps in results for the (do/dS), R) pair at the aforementioned scattering
energies and angles. At Ej,;, = 10 MeV the correlation coefficients reach r5q0 = 0.95 and
rtg = 0.90 at 6., = 50°, 150 = 0.82 and i, = 0.75 at 0., = 150°; at Ej,, = 135 MeV the
correlation coeflicients are rsy = 0.29 and r;, = 0.47 at 6., = 50°, and r59 = —0.40 and
rty = —0.46 at 0., = 150°. For two differently sampled 50 sets of potential parameters,
predictions are mixed and resulting correlation coefficients are in qualitative agreement.

The relationship between polarization P and asymmetry A demonstrates case of un-
correlated observables (Figure . Here, at Ej,, = 10 MeV the correlation coefficients
are r5o = 0.09 and rf, = 0.16 at 0.,, = 50°, r5o = —0.06 and ri, = —0.31 at 0.,, = 150°.
At Ey, = 135 MeV we get 150 = —0.15 and 5, = —0.30 at 6., = 50°, but at 6., = 150°
we obtain 759 = 0.43 and 75, = 0.58. We observe significant differences for correlation
coefficients between P and A (Figure for two probes of 50 sets of parameters, 759
and 7%,. However, since they remain small, our conclusion on the lack of correlation
between P and A is valid for both samples.

Basing on these observations we can conclude that 50 sampled sets of potential pa-
rameters, in principle, are sufficient to perform correlation analysis among 2N scattering
observables. This encourages us to stay with a 50-element sample in the following.
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Figure 6.10: The scatter plots for the differential cross section do/dS2 and the depolar-
ization R in np scattering at the c.m. scattering angle 0., = 50° (left) and 6., = 150°
(right) and at the incoming neutron laboratory energy Fj,, = 10 MeV (top) and 135 MeV
(bottom) based on the previously used 50 sets (the black stars) and the new generated
50 sets (the blue dots) of potential parameters of the chiral N*LO SMS potential.
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Figure 6.11: The scatters plot for P and A in np scattering at the c.m. scattering angle
Ocm. = 50° (left) and 6., = 150° (right) and at the incoming neutron laboratory energy
Epap, = 10 MeV (top) and 135 MeV (bottom). Symbols are the same as in Figure 6.10}
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Figure 6.12: The scatter plots for the np differential cross section do/dS) and the depo-
larization R at the c.m. scattering angle 6., = 30° (left), 0., = 90° (middle), and
Ocm. = 150° (right) and at the incoming neutron laboratory energy FEj., = 10 MeV (top)
and FEj,, = 135 MeV (bottom). The open blue circles and red squares represent 50 sets
of potential parameters of the chiral N'LO (A = 450 MeV) SMS force and the OPE-
Gaussian potential, respectively; the single black star and the single green diamond show
predictions obtained with the central values of the chiral N*LO (A = 450 MeV) SMS
and OPE-Gaussian potential parameters, respectively, and the single cyan plus represent
predictions based on the CD-Bonn potential [53].

In Figures [6.12] - [6.14] I summarize my results on dependences between 2N scattering
observables based on the two models (the OPE-Gaussian and the chiral N*LO SMS
potentials) using the first 50 sets of potential parameters. I also compare those results
with predictions of the CD-Bonn force. The top panel in Figure [6.12] visualizes a strong
positive correlation between the differential cross section do/dS) and the depolarization
observable R at Ej,;, = 10 MeV and at three scattering angles 6.,, = 30°, 90°, 150°
with the corresponding magnitudes of the correlation coefficients r (6., = 30°) = 0.91,
T(0em. = 90°) = 0.99, 7(0erm. = 150°) = 0.82 for the chiral N*LO SMS force (r(0c,,. =
30°) = 0.88, 7(0cm. = 90°) = 0.989, (0., = 150°) = 0.72 for the OPE-Gaussian
potential). For Ej,;, = 135 MeV and the three scattering angles, the scatter plots in the
bottom row of Figure [6.12] indicate a weak correlation between the pair (do/d$, R) for
both potentials. An analysis of Figure leads to conclusion that the do/dS) is weakly
correlated with P independently of the mentioned NN potentials, scattering energy, and
angle (in fact, that is true for the entire interval of 6.,, ). Another behavior of correlation
for the (R, D) pair is shown in Figure [6.14 While at Ej,;, = 10 MeV a strong positive
correlation occures for three scattering angles, at E,, = 135 MeV correlation changes
from strong positive to almost negligible, depending on scattering angle. As was expected
the symbols (the black star and the green diamond) associated with values of an individual
observable obtained with the central values of potential parameters are disposed within
the corresponding cloud of 50 values. In addition, comparing all the predictions, we see
that in most cases CD-Bonn results lie within the spread of 50 values obtained from
the OPE-Gaussian potential, sometimes CD-Bonn results are inside the N*LO cloud.
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However, there are also cases, like the (do/dS2, P) pair (top row of Figure when
the predictions for these observables, especially for P, based on the CD-Bonn potential
differs significantly from the predictions obtained with the central values of the chiral
N4LO SMS and OPE-Gaussian potential parameters.
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Figure 6.13: The scatter plots for the np differential cross section do/df) and the po-
larization P at the c.m. scattering angle 0.,, = 30° (left), 0.,,. = 90° (middle), and
Ocm. = 150° (right) and at the incoming neutron laboratory energy Ej.;, = 10 MeV (top)
and Ei,, = 135 MeV (bottom). Symbols are the same as in Figure |6.12]
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Figure 6.14: The scatter plots for the np depolarization R and the spin transfer coefficient
D at the c.m. scattering angle 6., = 30° (left), .., = 90° (middle), and 6., = 150°
(right) and at the incoming neutron laboratory energy Ej,, = 10 MeV (top) and Ej,;, =
135 MeV (bottom). Symbols are the same as in Figure [6.12]
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Figure 6.15: The scatter plots for selected np scattering observables: (a, b, ¢) do/d2
and P, and (d) do/dQ2 and A at the incoming neutron laboratory energy and at c.m.
scattering angle (a) Epp, = 10 MeV, 0., = 155°, (b) Ej, = 30 MeV, 0..,,,. = 105°, (c)
Elap = 65 MeV, 0., = 90°, and (d) Ej,, = 135 MeV, 6,.,,,. = 52.5°. The open blue circles
and red squares represent 50 sets of potential parameters of the chiral N*LO SMS force
and the OPE-Gaussian potential, respectively; the black star and the green diamond
show predictions obtained with the central values of the chiral N‘LO (A = 450 MeV)
SMS and OPE-Gaussian potential parameters, respectively, and the cyan plus represent
predictions based on the CD-Bonn potential. The experimental data (np black plus and
light-golden band) are in: (a) from Ref. [135] (Elp, = 10 MeV and 0., = 155.94°), (b)
from Ref. [136] (Elp = 29.90 MeV and 6..,,,, = 104.6°), (c) from Ref. [137] (Elap = 65 MeV
and 0., = 90°), and (d) from Ref. [147] (E, = 135 MeV and 6., = 52.5°).

Last but not least, in addition to displaying the scatter plots for theoretical results,
it is interesting to compare predictions with the available experimental data. Figure
shows such examples for (do/dS), P) and (do/dS), A) pairs. As seen from the top panel
all theoretical predictions are in the range of experimental data point (the black plus).
At the bottom panel, due to the lack of data for P at FEj,, = 65 MeV and do/dS) at
E., = 135 MeV we represent only a vertical band or horizontal band, reflecting available
data. Summing up, we conclude that for presented pairs of 2N observables very good
agreement between predictions and data is observed.

While scatter plots illustrate predictions at a given scattering angle, it is also interest-
ing to study the dependence of correlation coefficients on the scattering angle. Thus, let us
consider now the angular dependence of selected correlation coefficients for pairs of 2N ob-
servables as functions of the c.m. scattering angle in the range of 0., € [12.5°, 167.6°] [|,

shown in Figures -[621)

!This interval was chosen to avoid, divergences occurring due to division by a very small value or by
zero for 6..,, = 0° or 6.,, = 180° when the variance of observable tends to zero
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Figure 6.16: The angular dependence of correlations coefficients between np scattering
observables: (R, A) (top) and (R, D) (bottom) at the incoming neutron laboratory energy
Elap = 10 MeV ((a) and (c)), and Ej,, = 135 MeV ((b) and (d)). The solid red curve
represents predictions of the chiral N*LO SMS force and the blue curve shows predictions
based on the OPE-Gaussian potential.
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Figure 6.17: The angular dependence of correlations coefficients between np scattering
observables: (do/dS2, P) and (do/dQ, R') at the incoming neutron laboratory energy
FElap = 10 MeV ((a) and (c)), and Ejp = 135 MeV ((b) and (d)). The solid red and cyan
curves represent predictions of the chiral N*LO and N*LO* SMS forces, respectively.
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Firstly, I would like to spotlight a couple of examples of the obtained correlation
coefficients, focusing on the comparison of the predictions based on the chiral N*LO SMS
force and on the OPE-Gaussian potential (Figure , and on comparison of the chiral
SMS forces at N*LO and N*LO* (Figure[6.17). As can be seen from Figure typically
the OPE-Gaussian predictions are in a nice agreement with the chiral N*LO SMS ones E|
However, I have found also a clear difference between predictions of these potentials at
Elan = 135 MeV for correlation coefficients for (R, A) pair at backward scattering angles
around 0., =~ 135° see Figure m (b). Here the OPE-Gaussian potential leads to
moderate r while the chiral N*LO SMS force suggests uncorrelated observables.

For the chiral interactions at N*LO and N*LO*, the (do/dS, P) pair (Figure [6.17]
(a)) is especially interesting. Here we observe a disagreement in values of correlation
coefficients at low energy. However, this does not change the finding of a weak correlation
between do /dS) and the polarization P. The observed difference can be caused by different
numbers and values of LECs, and at each chiral order, see Table [CI]in Appendix C.

As seen from Figures — , the np differential cross section do/df) is, in gen-
eral, strongly correlated with R, A’, and D over a wide range of scattering angle at the
incoming neutron laboratory energies Ej,, = 10 and 30 MeV. A magnitude of the cor-
relation coefficient between the observables reaches more than 0.8, what means a strong
correlation in our interpretations. With increasing energies (Ej,, = 65 and 135 MeV) the
correlation decreases, but still at some regions correlation is moderate. This is especially
clearly seen for the chiral N*LO and N*LO* SMS, and the OPE-Gaussian predictions.
There is a weak correlation for the (do/dS), P) pair for chiral N*LO and N*LO* SMS,
and OPE-Gaussian potentials regardless of scattering energy. It is clearly seen that in
the case of chiral interaction, the variations of correlation coefficient depend on the chiral
order, however, moving to higher orders of chiral expansion doesn’t change qualitative
conclusions on the correlation between observables.

2Note a small range of y-axis in subfigures (a) and (c).
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Figure 6.18: The angular dependence of correlation coefficients between (do/dS2, R) and
(do/dS), A') in np scattering at the incoming neutron laboratory energy (a, ) Fla, =
10 MeV, (b, f) En, = 30 MeV, (¢, g) Elap = 65 MeV, and (d, h) Ej,, = 135 MeV. The
solid orange, green, red, cyan curves represent predictions of the chiral N2LO, N3LO,
N4LO and N*LO* SMS forces, respectively, and the blue line represents predictions
based on the OPE-Gaussian potential.

Figure shows the correlation coefficients for (R, A’) and (R’, A) pairs which are
strongly correlated for the chiral N*LO, N*LOT SMS and the OPE-Gaussian potentials
at Fp, = 10 and 30 MeV. At Ey,;, = 65 MeV, the magnitude of correlation coefficient for
(R, A") still takes big values, but in the interval 6, ,,, € (100°, 150°) reaches its minimum of
r 2 0.65 for the chiral N*LO SMS potential (r & 0.75 for N*LOT). At Ej,, = 135 MeV, a

strong correlation is observed at 0., € (50°,70°) and only negative moderate correlation
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at 0., € (110°,130°). For the (R', A) pair, we observe that at Ej,, = 65 MeV the
magnitude of correlation is still strong, and for the interval of 0., € (100°,150°) it
becomes moderate, but strong enough not to be ignored. At much higher energy, ., =
135 MeV, the absolute value of correlation coeflicient gradually decreases starting out
from 6,,, = 70° and reaches its minimum, for example, about r ~ 0.05 for N*LO*
potential, but from 6. ,, ~ 145° it increases again and anti-correlation becomes strong at
large backward scattering angles.
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Figure 6.19: The angular dependence of correlation coefficients between (do/dS2, D) and
(do/dS), P) in np scattering at the incoming neutron laboratory energy (a, e) Fj, =
10 MeV, (b, f) Elp, = 30 MeV, (c, g) En, = 65 MeV, and (d, h) Ej, = 135 MeV.
Curves are the same as in Figure [6.18]
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Figure 6.20: The angular dependence of correlation coefficients between (R, A’) and
(R, A) in np scattering at the incoming neutron laboratory energy (a, e) Ej,, = 10 MeV,
(b, f) Ei, = 30 MeV, (¢, g) Enp, = 65 MeV, and (d, h) Ep, = 135 MeV. Curves are the
same as in Figure (6.18,

In the case of P and A, see Figure [6.21] one gets a weak correlation for each of
N4LO, N*LO* SMS and the OPE-Gaussian potentials for most of scattering angles and
at all energies. The exceptional, maxima of  are observed with r ~ 0.65 for N*LO force
(r ~ 0.6 for N*LO™) in 6.,, € (60°,80°) for Ej,, = 65 MeV. At E;, = 135 MeV the
correlation coefficient can reach 0.8 at large backward scattering angles for the chiral
force at N*LOT order.
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Figure 6.21: The angular dependence of correlation coefficients between (P, R) and (P, A)
in np scattering at the incoming neutron laboratory energy (a, e) Ep,, = 10 MeV, (b, f)
El, = 30 MeV, (c, g) E, = 65 MeV, and (d, h) Ej,, = 135 MeV. Curves are the same
as in Figure [6.18}

The correlation coefficients for most pairs of 2N observables, also not shown in figures,
at N*LO and N*LO™ are close ones to another. This reflects the similarity of predictions
for these forces. But for some cases, the predictions of correlation coefficients for N*LO
are slightly shifted with respect to the ones at N*LO™. This is especially often observed
at energies above 30 MeV. The observed behavior of correlation coefficients is presumably
influenced by different numbers and values of LECs present at various orders of the chiral
expansion.



73.4 Azan 75.25 78 T
733 b g 1 782F 17795 F 4
75.15 | E
732 F . 4 754 F 177F . E
75.05 | : 177.85 | ord 1
731 KY e e &
L | 75 b e | 1 778} b E
r * 1 E E &
73 o 74.95 5 7775 | e | E
— 720 @ ﬁﬂﬁ 1 7490 ¢+*T$§ 1 7@ UF 1
. 7485 F | 4=t 4 77
-g 728 | | | | | 748 | | | | | 7765 | + | | | |
= 65 T T o T T 254 T T T T T 736 T T T T T
S + +
% 6.45 | F + A 252 | 4 734 F =
. +
- - » - 3
6 ’ 248 | e 173 "
6.35 |- % 4 246 F . jre8p {:’ﬁé‘? E
% oaa b {726 | fe E
63| EN N 7.24 | IR 5
6.25 | q24F gt 3 722 F & E
6al @ 248 Lo 1 72f, |t E
2F 7 238 [ iE: 1 718 F + E
615 | | | | | 236 | | | | | 716 | | | | |
< Yo} [<2] Yol (Y] n — < Yo} [<2] w0 (Y] n — < Yo} [<2] w0 (Y] n —
N @ 8 g N 2 & N @ 8 g N 2 & N @ 8 g 8 2 &
a N a4 N o NN a N a4 N A NN a N a4 N o NN
oy Y o§ Y od o oy Y o§ Y od o oy Y o§ Y od o
Eq [MeV]

Figure 6.22: The scatter plot for the np differential cross section do/dS2 and the deuteron
binding energy E; at the c.m. scattering angle 0..,,,, = 30° (left), 0..,. = 90° (middle), and
Ocm. = 150° (right) and at the incoming neutron laboratory energy Ej.;, = 10 MeV (top)
and Fj,, = 135 MeV (bottom). The open orange squares, green pluses, red diamonds,
cyan stars, and the open blue circles represent results obtained using 50 sets of potential
parameters of the chiral N2LO, N3LO, N“LO, and N*LOT SMS forces and the OPE-
Gaussian potential, respectively. The experimental binding energy is from Ref. [107]
(light-golden band).
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30 MeV (right). Curves are the same as in Figure m
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Our next point in study correlations in 2N systems is the identification of correlation
between the differential cross section (taken at Fj,, = 10 and 135 MeV, and at three scat-
tering angles 0., = 30°, 90°, and 150°) and the deuteron binding energy, see Figure[6.22]
The scatter plots clearly show the chiral N2LO SMS predictions (only partly visible in
Figure are outlier points with respect to the remaining results which are within the
interval of experimental uncertainty. At Fj,, = 10 MeV the chiral SMS N*LO points are
mixed with the chiral N*LO* SMS ones at all angles, and at Ei,, = 135 MeV overlapping
with the OPE-Gaussian predictions is also seen. Figure [6.23shows that the (do/dS?, E,)
and (A, E,) pairs, regardless of the potentials and scattering energy are weakly correlated
at all scattering angles. This gives us a reason to point the deuteron binding energy, in
addition to mutually uncorrelated 2N scattering observables, as independent observable
suitable for usage during fixing parameters of the NN potential. A gap between N4LO
and N*LO" is clear as at higher energy contributions from 6th order to the cross section
are Nonzero.

Summarizing all above observation for 2N scattering observables we conclude:

e We observe complex behavior of correlation coefficients with scattering angle and
energy.

e The polarisation P is characterized by a weak correlation with the remaining 2N
scattering observables. This is true for all NN potentials (in the case of the chiral
SMS forces starting from N®LO), the scattering energies and scattering angles.

e The differential cross section do/dS) is strongly correlated with all 2N scattering
observables, except P, at energies up to Ep,, = 30 MeV, in specific intervals of 0. ,,..
In the case of the chiral SMS interaction the magnitude of r increases at specific a
scattering angles with increasing chiral order. The predictions of the OPE-Gaussian
potential are in good agreement with the chiral N*LO SMS ones.

e The remaining 2N observables, such as R, R', A, A’, and D are strongly corre-
lated /uncorrelated between each other at investigated here energies up to Ey;, =
30 MeV. For some pairs of observables it is true at 60 MeV, but not over the entire
interval of 6., .

e Correlation between R, R/, A, A', D, and Cyy is moderate or weak.

Now I turn to analyze correlations between selected neutron-proton scattering ob-
servables and potential parameters (LECs) for the case of the N'LO potential with
A = 450 MeV. This potential involves 23 NN LECs. I restrict here myself to the only
example of potential analysis as study the dependencies between given observable and a
specific potential parameter requires investigations beyond this thesis. In general, each
observable depends on a whole set of correlated parameters, and studying only a corre-
lation coefficient between given observable and single parameter brings no information if
variation of observable is due to specific parameter. The dependence on the parameter
would be obvious if we could vary only one parameter and keep the others unchanged,
but in such a case we spoil correlated sampling from a joint probability density function.

As seen in Figure (Appendix C) showing correlations between different LECs
for the case of the chiral N*LO (A = 450 MeV) SMS potential or in similar Figure 10
from reference [9] in the case of chiral N*LO™T potential (A = 450 MeV), the strongest
correlations and /or anticorrelations are observed between the LECs in the channels with
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the largest number of potential parameters, especially 'Sy and in 3S;-*D;, see Appendix
A of Ref. [9]. In particular, according to the authors of Ref. [9], this explains the fact
that the statistical uncertainties of the respective LECs are greater than those for LECs
in other channels. Another important aspect is that we do not fulfill the condition of
linear dependence of 2N observables on potential parameters, which is usually assumed
for regression methods. The Lippmann-Schwinger equation, introduces rather polynomial
dependence of observables on potential parameters. Thus, in Figure [6.24] I give only a
few examples for correlation between observables and potential parameters and postpone
the analysis of multiple nonlinear regression with correlated predictors to future works.
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Figure 6 24: The angular dependence of correlatlon coefficients between (C[%,, do/dQ)
and (C}%,, P) (top), and (C7%,, do/dSY) and (C1%,, P) (bottom) obtained using the chiral
N4LO SMS force A = 450 MeV for np scattering at the incoming neutron laboratory
energy from Fp, = 7.6 MeV up to 30 MeV. The red solid line with stars, the maroon
solid line with up triangles, the purple solid with circles, the brown solid with up triangles,
the orange solid with diamonds, and the dark cyan solid with diamonds curves correspond
to Ela, = 7.6,10,13,17, 22, and 30 MeV, respectively.

In Figure I present correlation coefficients between the potential parameters
C7h, Ci - and the observables do/dQ, P at few incoming neutron energies, in the range
7.6 — 30 MeV The differential cross section appears strongly correlated (anti-correlated)
with C1%,, (CT¢,), for most of the scattering energies and angles. For the polarization
observable P there is no correlation between these LECs again regardless of energy and
angle. As can be observed, the behavior of the angular dependence of the coefficient
between two observables with C7%, is opposite to the correlation between observables and
C7%,. The reason is that Cj% is strongly anti-correlated with C7%, with r(C%,, C1%)) =
—0.998. Once again, while obtained result suggests independence of polarization P on
these specific parameters, this observation should be confirmed in future.
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6.2 Correlations among three-nucleon observables

Let us now turn to an analysis of the correlation coefficients among 3N elastic scattering
observables. I analyze various pairs of 3N observables computing correlation coefficients
at three laboratory energies of the incident neutron F,;, = 13,65 and 135 MeV and in the
range 0., € [12.5°,167.5°] of the c.m. scattering angle ﬂ Correlations between selected
3N observables are investigated with the chiral N2LO, N*LO and N*LO* SMS potentials
(A = 450 MeV) and with the OPE-Gaussian potential. For one energy we have 22524 pairs
of 3N observables for which I calculate correlation coefficients at a given scattering angle.
I repeat the path already done for 2N observables, but due to much larger numerical
requirements for 3N scattering I skip tests comprising results from various 50 or 100
samples-element samples. Thus, in following I give a few examples of scatter plot for
3N observables, (Figures - , and show representative examples of the angular
dependences of correlation coefficients, in Figures [6.33] - [6.42

Correlations between two selected 3N observables, i.e. the differential cross section
do /dS2 and the spin correlation coefficient C,,., were investigated with the chiral N*LO and
N4LOT SMS potentials A = 450 MeV. To make a better visualization of this correlation,
the scatter plot is shown at three scattering angles 6. ,,,, = 30°,90° and 150°. As shown in
Figure do /dS) appears strongly correlated with C,, at 6., = 90° and 6., = 150°
for F, = 13 MeV, as well at 6., = 30° and 0., = 150° for Ey,, = 135 MeV for the
two employed potentials. However, it is observed that for other scattering angles only a
weak correlation for this pair of 3N observables exists.
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Figure 6.25: The scatter plot between (do/dS2, C,;) in the elastic nd scattering at the
c.m. scattering angle 0., = 30° (left), 0.,,. = 90° (middle), and 6., = 150° (right) and
at the incoming neutron laboratory energy Fj,, = 13 MeV (top) and Ej,, = 135 MeV
(bottom). The blue and the green triangle represent results with N*LO and N*LO* SMS
potentials, respectively.

3As in the 2N case, we want to avoid correlations associated with the behavior of observables at
ac.m, ~ 0° or Qc,m, ~ 180°.
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Another picture occures for A, and iTy; which are strongly or moderately correlated,
depending on scattering angle and energy, see Figure [6.26] In the top row, we see that
N4LO* SMS predicts much smaller the magnitude of r in contrast to N*LO at 0., = 90°.
Specifically, the N*LO (N*LO™) potential yields for Ej,, = 13 MeV: at 6,,, = 30° r =
0.95 (r = 0.94), at 0,.,,, = 90° 7 = 0.90 (r = 0.63), and at 0., = 150° 7 = 0.99 (r = 0.99).
In the bottom row (FE,, = 135 MeV), the relationship between the observables looks more
linearly at 6., = 30° and indeed the magnitudes of r are: 6., = 30°r = 0.99 (r = 0.98),
Ocmn. = 90° 7 = 0.60 (r = 0.33), and 0.,,,. = 150° 7 = 0.71 (r = 0.77) with N'LO (N*LO™).
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Figure 6.26: Same as in Figure , but for (A,,iT;;) pair.

For other scatter plots shown in Figures[6.27]-[6.32] it can be generally concluded that
for the vast majority of selected angles at Ej,;, = 13 MeV there is often a strong correla-
tion, or rarely observed moderate correlation. For the higher energy, Fi,, = 135 MeV, we
often observe a weak correlation at almost all scattering angles, but there are exceptions
that indicate a moderate correlation.
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Figure 6.27: Same as in Figure 6.25 but for (C,,, C.,) pair.
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Figure 6.29: Same as in Figure but for (K (n), K (n)) pair.
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Figure 6.31: The scatter plot between (A,,iT1;) in the elastic nd scattering at the c.m.
scattering angle 0.,, = 30° (left), 0.,,. = 90° (middle), and 0., = 150° (right) and
at the incoming neutron laboratory energy Fj,, = 13 MeV (top) and Ej,, = 135 MeV

(bottom). The red and the blue triangle represent results with the chiral N*LO SMS
force and the OPE-Gaussian potential, respectively.
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Figure 6.32: Same as in Figure but for (K¥ (n), KZ(n)) pair.

Y

Figures and show a comparison of predictions based on the chiral N*LO SMS
force and on the OPE-Gaussian potential, similarly to results shown in Figures [6.26] -
[6.29] One can see that on both figures the OPE-Gaussian results are almost similar
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to the N*LO predictions. As an example, see Figure , the OPE-Gaussian potential
predicts that the correlation coefficients for the pair (A,,iT;1) takes the values: r = 0.89
at 0.,, = 30° r =0.95 at 0.,, = 90°, and r = 0.98 at 0.,, = 150° for Ey,, = 13 MeV
(r =099 at 6., = 30°, r = 0.61 at 0.,,, = 90°, and r = 0.45 at 6., = 150° for
Elap, = 135 MeV). The correlation coefficients for the pair (K;jl (n), Kz(n)) calculated
with the OPE-Gaussian potential are: » = 0.72 at 0., = 30°, r = 0.997 at 6.,, = 90°,
and r = 0.992 at 0., = 150° for Ey, = 13 MeV (r = 0.12 at 0., = 30°, r = —0.74
at 0., = 90°, and r = 0.88 at 0., = 150° for Ey,, = 135 MeV). At the same time,
the results with the N*LO SMS force for this pair are given: r = 0.86 at 0., = 30°,
r=0.999 at 6.,, = 90°, and r = 0.991 at 0.,, = 150° for Ey, = 13 MeV (r = 0.53 at
Ocm. = 30°, 7 = —0.86 at 0., = 90°, and r = 0.74 at 0., = 150° for E},;, = 135 MeV).
In conclusion, one can say that the correlation coefficient for these observables between
the OPE-Gaussian, N*LO, and N*LO™ are close one to another, this reflects the similarity
of predictions, and the difference between them strongly depends on the scattering angle.
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Figure 6.33: The angular dependence of the correlations coefficients between the spin
correlation coefficients C,, and do/d) for the incoming neutron laboratory energies
Elap = 13 MeV (a), Ep, = 65 MeV (b) and Ey,, = 135 MeV (c) in the elastic neutron-
deuteron scattering. The black, blue, green and red solid curves represent predictions of
the SMS chiral N2LO, N*LO and N*LO™ forces with A = 450 MeV and the OPE-Gaussian

potential, respectively.

As in the 2N case, I would like to present now the angular dependence of the cor-
relation coefficient among the various observables. As first example, in Figure [6.33] as
addition to Figure [6.25] I show the correlation coefficient for the (do/dS2, C,,) pair at
three scatering energies Fj., = 13,65, and 135 MeV. The differential cross section do /dS)
is, in general, moderately correlated with C,, for the chiral SMS force at N*LO and
N4LO™ orders, and for the OPE-Gaussian potential at all energies. However, we can also
observe a weak or, conversely, a strong correlation at certain intervals of the scattering
angle. Characteristically, a weak correlation for this pair is observed at forward or back-
ward scattering angles at Fy,, = 13 MeV, between 70° < 6,.,,,. < 150° for Ey,, = 65 MeV,
and between 45° < 6., < 140° at Ep, = 135 MeV. A strong correlation is detected,
in the case of N*LO* SMS, between 75° < 0., < 115° and at 120° < 6,,, < 140° for
Ei, = 13 MeV. Increasing energy a strong correlation appears at forward/backward
scattering angles. Interesting that the N‘LO SMS and OPE-Gaussian predictions are
much qualitatively similar than with the N*LO* SMS results. This is true for all ener-
gies. However, for our qualitative interpretation of the correlation coefficient, this does
not greatly affect on general conclusion about the relationship between these 3N
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Figure 6.34: The angular dependence of the correlations coefficients between the spin
correlation coefficients C,, and C,, for the incoming neutron laboratory energies Ei,i, =
13 MeV (a), Epp = 65 MeV (b) and Ey,p, = 135 MeV (c) in the elastic neutron-deuteron
scattering. Curves are as in Figure [6.33]

observables.

Figure [6.34] shows correlation coefficient between two spin correlation coefficients
(Cuzy Cyy). At Ep, = 13 MeV starting from a strong correlation for small angles, all
potentials, except N*LO™ predict a sharp minimum at 0., = 85°. With increasing val-
ues of .., r based on the OPE-Gaussian and N*LO SMS potentials grows which leads
to a strong correlation above 6.,, ~ 100°. N2LO SMS potential deliveries similar pre-
diction but additionally r decreases again for 130° < 6., < 155° revealing a moderate
correlation. For the chiral N*LO* SMS force, there is a strong correlation between the
observables up to 6.,, =~ 120° and for 6.,, > 150°, but again it becomes weaker at
130° < 0., < 145°. With increasing energy, we observe a strong/moderate/weak corre-
lation for specific intervals of 6, ,,, . The curves of correlation coefficients for the (C,, Cy,)
pair at the N*LO, N*LO* SMS, and the OPE-Gaussian potential are practically iden-
tical to each other at a qualitative level, but N?LO results clearly separate from others
at B, = 65 MeV and 20° < 0,,, < 90° and 6 > 150°. Also at Fj;, = 135 MeV N2LO
yields correlation coefficients different from other predictions, especially at 6., < 50°.
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Figure 6.35: The angular dependence of the correlations coefficients between the spin
correlation coefficients C),, and C, for the incoming neutron laboratory energies Fi,, =
13 MeV (a), Ejp = 65 MeV (b) and Ej,, = 135 MeV (c) in the elastic neutron-deuteron
scattering. Curves are as in Figure [6.33]
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Figure 6.36: The angular dependence of the correlations coefficients between the spin
correlation coefficient C,, and the nucleon to nucleon spin transfer coefficient Kg'(n)
for the incoming neutron laboratory energies El,, = 13 MeV (a), Elp = 65 MeV (b)
and Fj,p = 135 MeV (c) in the elastic neutron-deuteron scattering. Curves are as in

Figure [6.33]
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Figure 6.37: The angular dependence of the correlations coefficients between the spin
correlation coefficient C,, and the nucleon to deuteron vector spin transfer coefficient
K7 (d) for the incoming neutron laboratory energies Ei,, = 13 MeV (a), Eip = 65 MeV
(b) and Eyp, = 135 MeV (c) in the elastic neutron-deuteron scattering. Curves are as in

Figure [6.33]
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Figure 6.38: The angular dependence of the correlations coefficients between the nucleon
to nucleon spin transfer coefficients Kgl (n) and KZ (n) for the incoming neutron labo-
ratory energies Fl,, = 13 MeV (a), Elap = 65 MeV (b) and FEj,, = 135 MeV (c) in the
elastic neutron-deuteron scattering. Curves are as in Figure @

101



1 1
0.5 — 0.5
s s
> >
X X
g0 1 2
>> | >> |
< | < [
050 1 os)
@ ] i ] I ]
- AT W W o il A J ) P T NI W NI A A W JC ) PO S NI W IR WA WA W
1 20 40 60 80 100 120 140 160 1 20 40 60 80 100 120 140 160 1 20 40 60 80 100 120 140 160
c.m. eg c.m. eg c.m.

Figure 6.39: The angular dependence of the correlations coefficients between the nucleon
to nucleon spin transfer coefficient K’ g' (n) and the nucleon to deuteron vector spin transfer
coefficient Kgl(d) for the incoming neutron laboratory energies Fi,;, = 13 MeV (a), Elp =
65 MeV (b) and Ej,, = 135 MeV (c) in the elastic neutron-deuteron scattering. Curves

are as in Figure [6.33]
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Figure 6.40: The angular dependence of the correlations coefficients between the nucleon
to nucleon spin transfer coefficient K g' (n) and the nucleon to deuteron vector spin transfer
coefficient K#'(d) for the incoming neutron laboratory energies Ei, = 13 MeV (a), F.p, =
65 MeV (b) and Ej,, = 135 MeV (c) in the elastic neutron-deuteron scattering. Curves
are as in Figure [6.33]

In Figures[6.35]—[6.42] we observe more examples of angular dependence of correlation
coefficients between 3N observables. Analyzing these figures, I can conclude that the
change in the value of the correlation coefficient with scattering angle for some pairs of
3N observables (e.g (C.., K7 (d) or (Kg'(n), Kfj’(d))) does not depend on the model, but
for others (like (Cyy,do/dQY), (Cyy, C..)), there is a strong dependence on the order of
chiral expansion, and the correlation coefficient depends strongly on the scattering energy
in all cases. The predictions for correlation coefficients for N*LO* are usually slightly
shifted with respect to ones at N*LO. For the phenomenological OPE-Gaussian potential,
we see that the behavior of predictions is similar to the one for results based on the SMS
N4LO force for all energies.

General conclusions I get from analysis of Figures - and not shown here

figures for other pairs of observables are following:

e The angular dependence of the correlation coefficients reveals complex structures
for all pairs of observables and energies. These structures are the result of the non-
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Figure 6.41: The angular dependence of the correlations coefficients between the nucleon
to nucleon spin transfer coefficient K’ g' (n) and the nucleon to deuteron tensor spin transfer

coefficient KV (d) for the incoming neutron laboratory energies E, = 13 MeV (a),
Elap = 65 MeV (b) and Ej,, = 135 MeV (c) in the elastic neutron-deuteron scattering.
Curves are as in Figure [6.34]
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Figure 6.42: The angular dependence of the correlations coefficients between the nucleon
to nucleon spin transfer coefficient K g' (n) and the nucleon to deuteron tensor spin transfer
coefficient K%' (d) for the incoming neutron laboratory energies i, = 13 MeV (a),
Elap = 65 MeV (b) and Ej,, = 135 MeV (c) in the elastic neutron-deuteron scattering.
Curves are as in Figure [6.33]

linear dependence of the observables on potential parameters. In addition, using
partial-wave decomposition, i.e. splitting the genuine chiral LEC to their PWD
substitutions makes this relationship even more hidden. Also, our method of cal-
culating r, which is based on a sample of only 50 predictions, introduces additional
uncertainty. Thus at this stage, our description of the correlation coefficients and
subsequent conclusion should be treated only qualitatively. However, tests per-
formed for the 2N system, and the fact that the use of different potentials (therefore
different samples of parameters) lead to similar conclusions about the strength of
correlations, assure us of the correctness of the obtained picture.

In most cases, there is a similarity of correlation coefficients for pairs of observables
at N*LO and N*LO™, although there are also pairs of 3N observables for which they
are mutually shifted for 120° < 6., < 150°, especially at Ey,;, = 13 MeV. They are:
(Cow, KY (n)), (Cazy KZ'(d)), (KY (n), K (n)), (KY(n), Ky (d)), (KY(n), K (d)),
(KY (n), K3'V(d)), and (K (n), K7V (d)).
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o At Ej,, = 13 MeV 3N observables are usually strongly correlated in the case of the
chiral N*LO* SMS potential at 0., < 120°, and they become moderately or weakly
correlated or even no correlation is observed above this angle up to 6., =~ 150°
where again a strong correlation is seen.

e Besides the complex behavior of r with the scattering angle, observed for all ob-
servables, in some cases, there are sudden changes of correlation coefficients. For
example, in Figure at 0., € (125°,135°) we observe a rapid fall of r, which
reaches a minimum at 6., =~ 130° (N*LO predicts here r = 0.28). Note, that
both for Kfjl (n) (see Figure and K7 (n) (see Figure @ there is a peak with
maximum at 6.,, =~ 130° equal 0.9530 £ 0.0006 E| and 0.8969 4+ 0.0004, respec-
tively, when using the N*LO SMS potential. The observed minimum of r indicates
that both observables become independent or dependent nonlinearly. This, in turn,
may suggest that in this angular range at least one observable depends strongly
on some potential parameter (or parameters) or partial wave, which does not af-
fect the second observable significantly. More insight into the origin of structures
seen in angular dependence could be obtained by studying the dependence of given
observables on individual low-energy constants.

e In the case of the N2LO SMS force at all considered energies the correlation co-
efficient undergoes stronger changes with the scattering angle than the correlation
coefficients computed with other potentials. The observed stabilization at higher
orders shows that restricting calculations to the third order of chiral expansion can
be misleading for some correlation coefficients at studied here energies.

e With increasing energy, the magnitude of the correlation coefficient drops to zero
which indicates weak correlation or even no correlation, with rare exceptions of
(Cras KV (1)) (Figure and (C.., K¥(d)) (Figure @ pairs at Ej,, = 65 MeV.
For other pairs at Ej,, = 65 and 135 MeV a strong/moderate correlation appears

only at specific intervals of scattering angles. This is true for any potential, except
the chiral N2LO SMS force.

All the SMS chiral force based results in Figures [6.33] - [6.42] were obtained with the
regularization parameter A = 450 MeV. It is also interesting to study the sensitivity of
correlation coefficient to that cutoff parameter. Figure[6.43]demonstrates this dependence
at N*LO™ using three values of A: 450, 500, and 550 MeV for the pairs (C,,, C,,) (top row)
and (A,,iTy;) (bottom row). There is a cutoff dependence of the (Cy,, Cy,) correlation
coefficient for E,, = 13 and 135 MeV, and for E,, = 65 MeV all predictions overlap. At
Elan = 13 MeV (Figure M(a)) all potentials give a strong correlation below 6., =~ 60°
but for A = 500 and 550 MeV, it gets moderate/weak in the range of 6., € (75°,115°)
for A = 500 MeV and 0., € (75°,100°) for A = 550 MeV. For interval 0., € (75°,150°)
we also observe difference between these two predictions compared to the result based
on A = 450 MeV. For the higher energies (Figure [6.43[(b) and (c)) all predictions are
almost close to each other and, in particular, they practically overlap, for A = 450 MeV
and A = 550 MeV.

4 Aggy, statistical uncertainty.
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Figure 6.43: The angular dependence of correlation coefficients between (Cj,, Cy,) (top)
and (A,,iT1;) (bottom) for different cutoff values (450 MeV — green solid curve, 500
MeV — maroon solid curve, and 550 MeV — black dot-dashed curve) for the SMS force
at N*LO™T order and at the incoming neutron laboratory energies Ei,, = 13 MeV (left),
Elap = 65 MeV (center) and E,, = 135 MeV (right) in the elastic neutron-deuteron
scattering.

A relatively strong correlation occures also between the neutron vector and the deuteron
tensor analyzing powers A, and iTy; at Ep, = 13 and 65 MeV, see bottom row of Fig-
ure [6.43] For A = 550 MeV there is a strong correlation in the whole range of 6.,
decreasing only to r =~ 0.9 at 6., = 112.5° and the same is for A = 500 MeV but reach-
ing a minimum r & 0.83 at at 6., = 115°. At Ej, = 13 MeV the cutoff A = 450 MeV
provides a gradual decreasing of r from 0.95 at 6.,, = 12.5° to r ~ 0.58 at 0., = 97.5°,
but starting 0.,, ~ 100° A, and iT;; correlate more strongly with increasing 0., .
Moreover, the correlation between A, and iT;; becomes stronger at Ei,, = 65 MeV in
comparison to this at Ep, = 13 MeV. At Ej,;, = 135 MeV a strong correlation between
these observables is observed just for A = 550 MeV for most 6. ,,. For the remaining
cutoff values a strong or moderate correlation at specific interval of 6., occures.

Another interesting case of dependence between observables is so-called Phillips line [84],
[148] expressing a correlation between the 3H binding energy and the nucleon-deuteron
doublet scattering length, 2a,q. The Phillips line was observed in the past both in cal-
culations with and without 3NF. As seen from Figure we reproduce the Phillips
line using chiral N3*LO, N*LO and N*LO* SMS interactions at A = 450 MeV. The cor-
relation coefficient between these observables takes values of 0.75, 0.71 (after removing
3 outliers r is 0.97), 0.98, and 0.96 obtained at N?LO, N3LO, N*LO, and N*LOT, re-
spectively. With increasing chiral order, the values of these two observables change little
in comparison with the experimental data (E(*H) = —8.4820 + 0.0001 MeV [73] and
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2anq = 0.65 4+ 0.04 fm [149]). The observed discrepancy with the data is not surprising
as it is well-known that 3H binding energy and 2a,q are strongly influenced by 3NF.
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Figure 6.44: Order-by-order results (N2LO-N1LO" with A = 450 MeV) for the Phillips
line.
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Figure 6.45: The scatter plot between the nd elastic differential cross section do/dS2
and the triton binding energy E(*H) at the c.m. scattering angle 0., = 30° (left),
Ocm. = 90° (middle), and 0., = 150° (right) and at the incoming neutron laboratory
energy Fj.;, = 13 MeV (top) and FEj,, = 135 MeV (bottom). Description of symbols is as

in Figure [6.25
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As mentioned in Chapter [3.2] the differential cross section at medium energy and the
3H binding energy are nowadays used to fix parameters of the 3NF in the chiral SMS
model. Now I'm able to check if these two observables are uncorrelated. This is done
in Figure [6.45] Indeed, presented scatter plots confirm no correlation between the two
observables. r(do/dQ), E(*H) remains small for both energies and all scattering angles
and is within the range (min |r| = 0.05 and max |r| = 0.28). For not shown here energy
65 MeV |r(do/dQ), E(3H)| doesn’t exceed |r| =~ 0.3. T expect that this picture will not
change for complete predictions comprising 3NF.

Summarizing, I showed that it is possible to analyze the correlation among various
3N observables using the correlation matrices for potential parameters provided with
the models of NN interaction from the Granada and Bochum-Bonn groups. My results
demonstrate a complex dependence of correlation coefficients on scattering angle for
all pairs of 3N observables and in the whole range of studied energies. This reflects
the dependence of observables on potential parameters. Results obtained for various
models of NN interaction proof that it is possible, at least on a qualitative level, to point
correlated /uncorrelated observables.

It was also demonstrated that for the chiral interaction the angular behaviour of
the correlation coefficients depends on the order of chiral expansion as well as on value
of the cutoff parameter. Specifically, for some pairs of spin correlations, spin transfer
coefficients, and analyzing powers, there is a strong dependence on the cutoff parameter.
It is interesting that a strong correlation appears at specific intervals of scattering angles,
what can indicate sensitivity of the transition amplitude on specific partial waves.
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Chapter 7

Summary

In the presented thesis, the high-quality chiral NN potential with the semilocal regular-
ization in momentum space at different orders of chiral expansion up to N*LO* have been
implemented for the calculation of neutron-proton and neutron-deuteron elastic scatter-
ing and the neutron-induced deuteron breakup reactions at energies up to 200 MeV. The
first results of the application of the OPE-Gaussian force to 3N reactions are also given.
In the present study, we have neglected the three-nucleon and Coulomb interactions. The
formalism of the Faddeev equation has been used to obtain 3N observables.

I focused on two applications of the covariance matrix of NN potential parameters.
They are: 1) the study of statistical uncertainties of 3N observables and 2) the study
of correlations among 2N and 3N observables. In the main part of the thesis, I present
an in-depth assessment of various theoretical uncertainties in the ab initio type calcula-
tions based on the chiral NN SMS force in describing three-nucleon processes. I used the
correlation matrix of parameters of that NN potential to study the propagation of un-
certainties from these parameters to Nd scattering observables. I compared the obtained
uncertainty to other theoretical errors, i.e., to the cutoff dependence and to the trunca-
tion errors. The latter is estimated using two different approaches: the prescription from
reference [14] and the Bayesian approach from references [15] and [61].

I found that the statistical errors remain relatively small in the nucleon-deuteron
scattering independently from the employed NN force model. Namely, the statistical
uncertainties of the chiral predictions have similar magnitudes and energy dependence
as those from the semi-phenomenological OPE-Gaussian potential. Only at low energies
and at N*LO truncation errors become smaller than statistical uncertainties, for all nd
elastic scattering observables (the differential cross section and a whole set of polarization
observables). The estimated magnitudes of all types of uncertainties remain small, usually
in the range 0.5%4%, depending on the energy and the observable. The fact that various
contributions to the theoretical uncertainty are so small points to the high quality of
the theoretical input in the SMS interaction. It is worth mentioning that theoretical
uncertainties remains usually much smaller than experimental errors.

My analysis of theoretical uncertainties in the neutron—deuteron scattering confirms
that the SMS chiral potential belongs to the first-rate models of nuclear forces. It also
demonstrates that, with ongoing progress in the derivation, regularization, and inclu-
sion of higher-order contributions to the nuclear interaction, theoretical uncertainties,
obtained with the chiral interaction, would be reduced to the limit dependent only on
the quality of experimental data which influence the uncertainty of potential parameters.
The Nd data description delivered by the chiral SMS force is similar to that based on the
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older versions of the chiral potential from the Bochum—Bonn group. The omitted three-
nucleon interaction is the main reason for observed discrepancies between predictions and
the data at energies above about 60 MeV. However, while the dominant contributions to
the 3NF arising at N2LO usually reduce these discrepancies they are not able to explain
them fully [61], [I50], and [86]. It is expected that only after using consistent 3NF up
to at least N3LO a satisfactory data description will be achieved. It would be interest-
ing to check if the results presented in this thesis will remain valid when three-nucleon
interaction is taken into account in calculations. Such a study is planned as soon as the
consistent SMS 3NF at N3LO is available.

In Chapter the limitations of procedure used to fit potential parameters to scatter-
ing observables or bound states in 2N or 3N systems, which are not sensitive enough to the
NN/3N interaction in some partial waves are formulated. They call for careful analysis
of dependencies between observables and parameters. Thereby, I wanted to point out the
importance of the possible existence of correlations among two- and three-nucleon observ-
ables as well as their sensitivity to potential parameters acting in specific partial waves.
This is important for future investigation within the general YEFT framework, in order
to confidently eliminate any ambiguities in the determination of the LECs, especially for
3NF beyond N3LO.

Systematic analysis of the correlation coefficients among 2N and 3N observables is
given in the second part of my thesis. I demonstrated that it is possible to analyze the
correlation among various 2N and 3N observables using the correlation matrices of po-
tential parameters provided with the models of NN interactions from the Granada and
Bochum-Bonn groups. Consequently, I showed that there are pairs of 2N spin observ-
ables for which an almost linear relationship exists. It happens both for the chiral SMS
force (at N®LO and beyond) and the OPE-Gaussian potential. For some pairs of 2N
observables, the angular dependence of the correlation coefficients depends strongly on
the order of chiral expansion as well as on the scattering energy. It is interesting that a
strong correlation appears at specific intervals of scattering angles. This could indicate
a sensitivity of the transition amplitude to specific parameters or partial waves.

The same is true for elastic neutron-deuteron scattering. I studied selected correlations
among 3N observables. All angular dependences of correlation coefficient reveal a complex
behavior of correlation coefficients r with scattering angles and the existence of regions
with |r| > 0.8. It was also demonstrated that when using the chiral interaction the
angular dependence of the correlation coefficients depends on the order of chiral expansion
as well as on the scattering energy. In addition for some pairs of spin correlation and
spin transfer coefficients, as well as analyzing powers, there is a strong dependence on the
cutoff parameter. It is interesting that a strong correlation appears at specific intervals
of scattering angles.

The presented thesis includes innovative elements that have not been used to study
2N and 3N systems before. They are:

e the usage of the covariance matrix of the potential parameters for the new gener-
ation of the chiral interaction derived up to N*LOT of the chiral expansion using
the semilocal regularization in momentum space and the OPE-Gaussian potential;

e sampling various sets of potential parameters from the multivariate normal dis-
tribution (in space of parameters) with a given covariance matrix to obtain new
versions of the NN potential and resulting 2N and 3N observables;
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e establishing statistical errors for 3N scattering observables and studying their de-
pendence on energy, scattering angle, potential, and cutoff parameters;

e gathering information about the correlations among 2N and 3N observables;

e investigation, in the case of the chiral interaction, the dependence of correlation
coefficient on the order of chiral expansion and regulator value.

The presented study is in line with modern efforts to construct a precise model of nuclear
interaction comprising two- and many-body forces. The fixing free parameters of such a
model is an important part of the whole derivation and has to be done carefully using the
proper statistical methods. To this end, the knowledge of theoretical uncertainties as well
as correlations between observables and sensitivity of observables to model parameters
have to be taken into account. Of course, I aware that our search for a correlated /uncor-
related set of observables is only the first step towards an optimal set of observables. The
next step is to study the sensitivity of the selected observables to the magnitude of the
parameters, using suitable statistical techniques to measure and interpret relationships
between numerous dependent variables (LECs) and one dependent variable (e.g., 2N or
3N observable). Nevertheless, my results reveal the usefulness of the covariance matrix of
NN potential parameters for studies the neutron-proton and the neutron-deuteron elastic
scatterings, and the deuteron breakup reaction observables. They may be also extended
to other systems.
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Appendix A

Sampling 50 sets of the chiral potential parameters at
different orders in the chiral expansion

We have been equipped by the authors of Ref. [9] with the mean values of the NN potential
parameters and their correlation matrix for the chiral interaction at each order of chiral
expansion. This allows us to sample 50 sets of potential parameters, LECs, from the
multivariate normal distribution and obtain new versions of the corresponding NN force.

The Mathematica script given below shows how I perform such sampling in prac-
tice. After reading in the central values of parameters (variables ExpValuesLECs*) and
covariance matrices (variables CovMatrix*) I use the RandomVariate function, taking
as its argument MultinormalDistribution which is nothing but a multivariate normal
distribution. Having generated 50 samples of LEC’s at each chiral order, the next step
is to write data in the format as used in the subroutine code of chiral SMS potential in
“for” loop and subsequent export parameters to a file.
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[ - SetDirectory[NotebookDirectory|[]];

files = FileNames["Covariance-Matrix*.dat", NotebookDirectoryl[]];

Imports data:
the covariance matrices of parameters at
differentorders(LO, NLO, N°LO, N°LO, N*LOandN*LO*)
in the chiral expansion withcutoff A = 450 MeV)

- 1= (*cut2 means A = 450 MeV %)

(*LOx)

CovMatrixLOCut2 = Import[files[[1]]];
(*N2LO%*)

CovMatrixN2LOCut2 = Import[files[[2]]];
(*N3LO%*)

CovMatrixN3LOCut2 = Import[files[[3]]];
(*N4LO+x)

CovMatrixN4LOPlusCut2 = Import[files[[4]]];
(*N4LO%)

CovMatrixN4LOCut2 = Import[files[[5]]];
(*NLO=*)

CovMatrixNLOCut2 = Import[files[[6]]];
Gives the correlation matrix for the corresponding covariance matrix

inf+ = p1 = Correlation[CovMatrixLOCut2] // MatrixForm;
p, = Correlation[CovMatrixN2LOCut2] // MatrixForm;
p3 = Correlation[CovMatrixN3LOCut2] // MatrixForm;
p4 = Correlation[CovMatrixN4LOCut2] // MatrixForm;
ps = Correlation[CovMatrixN4LOPlusCut2] // MatrixForm;
ps = Correlation[CovMatrixNLOCut2] // MatrixForm;

The central values of the chiral LO, NLO,
N2 LO, N*LO, N*LOandN*LO" SMS (A = 450 MeV)

potential parameters (low - energy constants, LEC's)

112



2

Appendix_1.nb

- J=(*LEC's LO, A = 450 MeV (cut=2)%)

ExpValuesLECsLOCut2 =
{-0.075582417864592744, -0.084738448787523735, —0.075392863895045389} ;
(*LEC's NLO, A = 450 MeV (cut=2)x)
ExpValuesLECsNLOCut2 =
{-0.077938124413691717, 0.49496052083734010,
0.64254690467392583, -0.12511487702236343, 0.36594848141466652,
0.12623389878766889, 0.11094128292763249, 0.28092810466022505,
-0.33914945155602533, —-0.075567405693055242}
(*LEC's N2LO, A = 450 MeV (cut=2)%)
ExpValuesLECsN2LOCut2 =
{0.0073531853, 0.199222330, 0.37773895, -0.031018587, 0.18918091, 0.31853848,
0.53970847, 0.76404881, -0.044238698, 0.0098588308};
(xLEC's N3LO, A = 450 MeV (cut=2)x)
ExpValuesLECsSN3LOCut2 =
{0.049440144478154625, —-0.067851120626338163, 3.5107105027204075,
0.87440686294802017, 0.016628629038027941, 0.95653559359427653,
0.034616530856821981, -0.17370940139736049, 5.2796498528876699,
0.41431770066015017, —0.023286178402950435, 1.6742777866499625,
0.82843006226903082, 0.51697470296182158, 1.1390323508502656, —0.24808743784999177,
0.33562748273714116, -0.77188034815936479, -0.18197158903775518,
0.50421327948104999, —0.089674005079767929, 0.051770603265125580} ;
(*LEC's N4LO, A = 450 MeV (cut=2)x)
ExpValuesLECsN4LOCut2 =
{0.010596572607727553, 0.090666804874369164, 2.9617749120040253, 0.75140537198508639,
-0.057107861359049959, 0.22510248577682418, 0.0081122609433074335,
-0.0079985206224870431, 2.8364705496272742, 0.37676863022591578,
0.0017534709116716980, 1.3010338412251252, 0.60503657235297026,
1.0800863507008038, 0.85084310989652090, 0.35107833086177215, 0.12559984040349559,
-0.44161518729421245, -0.16108047872821163, 0.21999587983184971,
-0.15826534216162522, 0.012072334371911570, 0.12627105733936761};

Checking
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Appendix_1.nb

in[~ J- CovMatrixN2LOCut2;
CovMatN2LOCut2 = (CovMatrixN2LOCut2 + Transpose[CovMatrixN2LOCut2])/ 2.0;
CovMatN2LOCut2 // MatrixForm;
CovMatrixN2LOCut2 - Transpose[CovMatrixN2LOCut2] // MatrixForm;
CovMatrixN2LOCut2 - Transpose[CovMatrixN2LOCut2] // Flatten /l Abs // Max;
CovMatN2LOCut2 == Transpose[CovMatN2LOCut2] // MatrixForm;
CovMatrixN2LOCut2 - CovMatN2LOCut2 // Flatten /I Abs // Max
CovMatrixN2LOCut2 // Flatten /I Abs // Max

ouf - 7.64091 x 1077

Ouf~ ]-0.000231166

Actions for LO (A = 450 MeV)

n[~ - CovMatLOCut2 = (CovMatrixLOCut2 + Transpose[CovMatrixLOCut2])/ 2.0}
CovMatrixLOCut2 // MatrixForm;
CovMatrixLOCut2 - Transpose[CovMatrixLOCut2] // MatrixForm;
CovMatrixLOCut2 - Transpose[CovMatrixLOCut2] // Flatten // Abs /| Max;
CovMatLOCut2 == Transpose[CovMatLOCut2] // MatrixForm

Out[« J/MatrixForm=

True

Actions for NLO (A = 450 MeV)

CovMatNLOCut2 = (CovMatrixNLOCut2 + Transpose[CovMatrixNLOCut2])/ 2.0;
CovMatrixNLOCut2 // MatrixForm;
CovMatrixNLOCut2 - Transpose[CovMatrixNLOCut2] // MatrixForm;
CovMatrixNLOCut2 - Transpose[CovMatrixNLOCut2] // Flatten // Abs // Max;
CovMatNLOCut2 == Transpose[CovMatNLOCut2] // MatrixForm

Actions for N?LO (A =450 MeV)

in[~ = CovMatN2LOCut2 = (CovMatrixN2LOCut2 + Transpose[CovMatrixN2LOCut2])/ 2.0;
CovMatrixN2LOCut2 // MatrixForm;
CovMatrixN2LOCut2 - Transpose[CovMatrixN2LOCut2] // MatrixForm;
CovMatrixN2LOCut2 - Transpose[CovMatrixN2LOCut2] // Flatten // Abs /| Max;
CovMatN2LOCut2 == Transpose[CovMatN2LOCut2] // MatrixForm

Qut[» J/MatrixForm=

True

Actions for N°LO (A =450 MeV)
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4 Appendix_1.nb

n[~ ]- CovMatN3LOCut2 = (CovMatrixN3LOCut2 + Transpose[CovMatrixN3LOCut2])/ 2.0;
CovMatrixN3LOCut2 // MatrixForm;
CovMatrixN3LOCut2 - Transpose[CovMatrixN3LOCut2] // MatrixForm;
CovMatrixN3LOCut2 - Transpose[CovMatrixN3LOCut2] // Flatten // Abs // Max;
CovMatN3LOCut2 == Transpose[CovMatN3LOCut2] // MatrixForm

Qut[« J/MatrixForm

True

Actions for N*LO (A =450 MeV)

[~ J- CovMatrixN4LOCut2;
CovMatN4LOCut2 = (CovMatrixN4LOCut2 + Transpose[CovMatrixN4LOCut2])/ 2.0;
CovMatN4LOCut2 // MatrixForm;
CovMatrixN4LOCut2 - Transpose[CovMatrixN4LOCut2] // MatrixForm;
CovMatrixN4LOCut2 - Transpose[CovMatrixN4LOCut2] // Flatten /l Abs // Max;
CovMatN4LOCut2 == Transpose[CovMatN4LOCut2] // MatrixForm

Qut[« J/MatrixForm=

True

Lack Transpose[ExpValuesLECs], CovMat is symmetrized.
Represents a multivariate normal (Gaussian) distribution with the vectors of central values of poten-
tial parameters and covariance matrices.

n[~ - SamplesLOCut2 =
RandomVariate[MultinormalDistribution[ExpValuesLECsLOCut2, CovMatLOCut2], 50];
SamplesNLOCut2 = RandomVariate[
MultinormalDistribution[ExpValuesLECsNLOCut2, CovMatNLOCut2], 50];

SamplesN2LOCut2 = RandomVariate[MultinormalDistribution]

ExpValuesLECsN2LOCut2, CovMatN2LOCut2], 50];
SamplesN3LOCut2 = RandomVariate[MultinormalDistribution]

ExpValuesLECsN3LOCut2, CovMatN3LOCut2], 50];
SamplesN4LOCut2 = RandomVariate[MultinormalDistribution]

ExpValuesLECsN4LOCut2, CovMatN4LOCut2], 50];

(*Preparation before exportx)

n[~ ]=out = """
For[iset = 1, iset < Dimensions[SamplesLOCut2][[1]] , iset = diset +1,

out = out<>"&!=\nSOMETHING" <> ToString[iset]<>"\n";

For[ii = 1, ii < Dimensions[SamplesLOCut2][[2]], ii = ii + 1,

out = out <>ToString[SamplesLOCut2[[iset, ii]], FormatType - FortranForm]<>", ";
If[Mod[ii, 6] == 0O,
out = out<>"&!=\n";

15

15

I
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Appendix_1.nb 5

(*Export[NotebookDirectory[]<>"SamplesN3LOCut2.dat" , out , "Text"];*)
(*Export["SamplesN3LOCut2LECs.dat",SamplesN3LOCut2]*)

Export["SamplesNewSetsLOCut2LECs.dat", Partition[SamplesLOCut2, 1]]
SamplesNewSetsLOCut2LECs.dat
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Appendix B

Bayesian truncation errors of 3N observables

This appendix contains additional figures presenting the dependence of the chiral pre-
dictions with truncation errors using the Bayesian approach with respect to the order of
chiral NN potential. Similarly to examples given in Chapter 5| in all cases we observe
rapid decreasing of truncation errors with growing order of chiral expansion. As expected,
moving to higher energies makes truncation errors at given order bigger.

0.2 : 1 06
0.15
0.1

0.05

< .0.05
0.8

06 [
04
0.2

0.2 |
-0.4 |
-0.6 |
-0.8 | ]
_1 Ll | | | | | | | T | | | | | | | L 1

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
6c.m. [ded] 6 m. [deg]

Figure B1: The neutron vector analyzing power A, for the elastic nd scattering process
at the incoming neutron laboratory energy (a) Ej,, = 13 MeV, (b) Ej., = 65 MeV, (c)
Elap = 135 MeV and (d) Epp, = 200 MeV as a function of the c.m. scattering angle
Oc.m.. The light-shaded brown, green and blue, purple and orange bands depict 68% DoB
intervals using the Bayesian model C8% |, based on the chiral NLO, N?LO, N3LO and
N“LO (A = 450 MeV) SMS potentials, respectively.
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Figure B2: The deuteron vector analyzing power iT;; and the deuteron tensor analyzing

power T for the elastic nd scattering process at the incoming neutron laboratory energy

(a, e) Elab =13 MeV, (b, f) Elab = 65 MeV, (C, g) Elab = 135 MeV and (d, h) Elab =
200 MeV as a function of the c.m. scattering angle 6,,, . Bands are as in Fig. .
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Figure B3: The spin correlation coefficients Cy, and Cp,, — Cy,, for the elastic nd
scattering process at the incoming neutron laboratory energy (a, e) Ep, = 13 MeV, (b,
f) Flap = 65 MeV, (c, g) Flp = 135 MeV and (d, h) Ej, = 200 MeV as a function of the
c.m. scattering angle 6., . Bands are as in Fig.
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Figure B4: The nucleon to nucleon spin transfer coefficient Kg’ (n) and the neutron-

deuteron tensor spin transfer coefficient K;lx' — Kg/y/(d) for the elastic nd scattering
process at the incoming neutron laboratory energy (a, ) Epp, = 13 MeV, (b, f) Ep, =
65 MeV, (c, g) Ep = 135 MeV and (d, h) Ej,, = 200 MeV as a function of the c.m.
scattering angle 6., . Bands are as in Fig.
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Appendix C

Below I give values of LECs of the NN interactions up to N*LO™T with their uncertain-
ties. The latter ones are square roots of diagonal elements of suitable covariance matrix

delivered by the Bochum-Bonn group.

LEC N2LO N3LO NLO N'LOT

C7h 1 0.007£0.000 | 0.049£0.000 | 0.011£0.000 | 0.010=0.000
C™P | 0.199+0.001 | -0.67940.006 | 0.091%0.013 | 0.121£0.013
Diso 3.511+£0.224 | 2.962+0.162 | 2.579+0.151
Cipi | 0.378£0.015 | 0.875+0.019 | 0.751+£0.014 | 0.753+0.013
Dip1 0.166+0.280 | -0.05740.124 | -0.05640.118
Dipa 0.957+0.012 | 0.225+0.008 | 0.218-0.008
Cys1 | -0.31040.001 | 0.34640.004 | 0.008£0.002 | 0.01120.002
Css1 | 0.18040.004 | -0.17420.034 | -0.008-£0.016 | -0.024+0.017
Dasi 5.280+0.404 | 2.836+0.186 | 2.660+£0.175
C., 0.318% 0.009 | 0.414=£0.024 | 0.37740.014 | 0.410+0.014
D., 20.233£0.47 | 0.002£0.202 | -0.3300.200
Dsp; 1.674+0.265 | 1.301+£0.121 | 1.525+0.119
Csro | 0.540£0.005 | 0.828£0.006 | 0.605£0.005 | 0.59120.005
Dsro 0.517+0.076 | 1.08£0.059 | 0.813£0.053
Capr | 0.76420.004 | 1.139£0.005 | 0.85140.003 | 0.82840.003
Dap1 20.248+0.077 | 0.351£0.057 | 0.215+0.053
Capa | -0.442+0.001 | 0.336+0.002 | 0.126-0.001 | 0.127-£0.001
Dsps 20.772+0.010 | -0.44220.008 | -0.449+0.008
D., ~0.182+0.007 | -0.16120.006 | -0.219-£0.007
Dsps 0.504£0.045 | 0.2240.022 | 0.186--0.022
Daps ~0.897+0.052 | -0.15840.022 | 0.140+0.030
C?2. | 0.010£0.000 | 0.051840.000 | 0.01240.000 | 0.012=0.000
creren 0.12640.005 | 0.13320.005
Bspo 2.290-0.130
Errs 2.161£0.275
Esps 1.31940.172
Eara 0.278+0.067

Table C1: The central values and uncertainties of LECs of the NN contact interactions
at N2LO, N3LO, N4LO, and N*LO™ chiral orders for the cutoff value of A = 450 MeV.
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Figure C1: The correlation matrix between the various potential parameter (LECs) for
the case of the chiral N*LO SMS potential with A = 450 MeV.
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